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NOMENCLATURE 

In the literature, one finds several names for MegSi = 

CHg which is quite common for compounds developed over long 

periods of time. The official lUPAC names are not yet 

available, but will probably be issued later this year. 

However, the following names have been recommended (1) for 

the respective structures and will be listed along with the 

others which have been used in the past. 

Me^ 
Si=CHp Dime thyImethylenes i1ane (1), 

Me"^ 1,1-dimethyl-l-silaethylene, 
2-methyl-2-silapropene 

Me 
Si=0 Dimethylsilicon oxide (1), 

Me'^ dimethyloxosilane (1), dimethyl-
silaketone, dimethylsilanone 

Me^ ^Me 
Si=Si{^ Tetramethyldisilene (1) 

Me Me 

Me 
^Si=NH Dimethylsilicon imide (1), 

Me^ dimethylsilylenimine (1) 

Me 
^Si=S 

Me^ 
Dimethylsilicon sulfide (1), 
dimethylthioxosilane (1) 
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HISTORICAL 

It has been more than three quarters of a century since 

the first investigations were reported in organosilicon 

chemistry (2). The area has grown to a stage where we are 

now only beginning to understand some of the properties of 

organosilicon compounds, which are quite unique compared to 

those of its congener-carbon. One such area of interest is 

the consideration of multiple bonding of silicon which is 

perhaps one of the oldest, yet one of the least understood, 

phenomena. 

As early as 1866, Dilthey (3) reported the synthesis 

of diphenylsilanone (1). This was followed in 1909 by an 

PhSiPh PhCH.SiCH.Ph PhSiPh 

II II 
0 CHg CHg 

(1) (2) (3) 

attempted synthesis of dibenzylsilaethylene (2) by Kipping 

(4) and later by a reported isolation of diphenylsilaethylene 

(3.) by Schlenk and Renning (5) . Little did it matter that 

all of these efforts were failures, as the real impetus for 

studying the problem of multiple bonding in silicon was 

made. Only time was necessary before technology reached a 

point where it could be produced synthetically and be better 



www.manaraa.com

3 

understood theoretically. Recent additional experimental 

evidence (6) for the rather well established d-orbital 

participation in (p-d) 7r-back-bonding of silicon has only 

increased the interest. Bonding of the (p-p) ir type in 

silicon until quite recently was thought to be nonexistent 

(7). There has only been a minimal amount of data to sug­

gest the possibility for (p-p) ̂ -bonding but this has pro­

vided the real justification to pursue the investigation of 

this new type of bonding with silicon. 

Pitzer (8) used a limited qualitative basis of pic­

torial representations to convey that the reason for the 

lack of (p-p) TT-bonding observed in n > 2 row elements was 

the repulsion of inner shell electrons of the adjacent 

atoms. Mulliken (9, 10) calculated relevant integrals to 

examine this question and found that inner shell-inner shell 
O 

overlaps were negligible (< 1(T ) while inner shell-valence 

shell integrals had values up to 0.1 which were of some im­

portance. These latter repulsions were no larger for the 

third row atoms than the second row atoms and thus seemed 

to negate Pitzer's original explanation (8). 

Mulliken also considered (p-p) Tr-bonding by computing 

bonding overlap integrals. He showed that npr - npn" (n > 2) 

overlaps are, in some cases, greater than 2prr - 2p7r overlaps 

at equilibrium bonding distances. He reasoned that one must 

use overlap integrals at constant ç , where ç = R/Xr^+rg) 
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2 
(R = bond distance, = n^^ ^o^^eff = the maximum in the 

radial probability curve). The bonding distance R is rhe 

sum of the radial maxTima for both atoms when § = 1. At this 

condition, the (C-C) ir-overlaps were found to be greater 

than (Si-Si) Tr-o ver laps (0.29 + 0.22, respectively). However, 

under the same circumstances (§ = 1), cr-overlaps of third 

row elements were larger than those of the second row ele­

ments. Mulliken used these data to conclude that the lack 

of TT-bonding in compounds of heavy elements could be 

plained by relatively stronger a-bonds being formed when 

the multiple bonded species polymerizes. 

Aside from the fact that there was experimental evi­

dence that the (C-C) cr-bond was stronger than the correspond­

ing (Si-Si) bonds (11), Curtis (12), in the most recent 

theoretical investigation, pointed out that typical values 

of Ç range from 0.7 (H-H) to 1.77 (F-F) signifying that the 

bond distance was not necessarily directly related to the 

radial maxima of the free atom, but rather to the lowest 

energy. The use of constant §, then, was hardly warranted. 

Rather, the use of the Mulliken-Wolfgang-Helmholtz (MWtl) 

approximation (13, 14) of off-diagonal elements (Hij): 

Hij = 0.5 K Sij (Hij+Hij) was needed to make an estimate 

of the Hij elements in the ir-bond involved rather than just 

comparing overlap integrals (15). 

The EHMO results of Curtis showed that values 
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associated with 3d 7r~orbitals were always considerably 

higher than those with only pr type orbital s. This showed 

up when the tt (b^ u) MO overlap population of disilaethylene 

(HgSi^SiHg) (4) was broken down into separate contributions 

of (p-p) (0.277), (p-d) (0.348), and (d-d) (0.038) totaling 

0.663. The large (p-d) contribution was due to the large 

(p-d) TT-overlap integrals which were responsible for the 

great sensitivity of ir-bond overlap population in disila­

ethylene. The d-orbitals had less effect on overlap popu­

lation in the cr-framework which was the same as saying in 

MO language that polarizability of the Tr-bond was greater 

than for the a-bond. The d-orbitals were acting as polari­

zation functions for the s and p potentials. 

Silaethylene (H^SizzCHg) (5^) yielded somewhat different 

results than disilaethylene. Besides differences in bonding 

and antibonding for the respective MO's (due to differences 

in symmetry), the carbon-silicon Tr-bond (b^) overlap popu­

lation was 0.327 and was composed of contributions of 2p-3p 

(0.130) and 2p-3d (0.197). With no d-orbitals, the p-p 

overlap population was only 0.158. The smaller value of 

the TT-bond overlap population (as compared to disilaethylene), 

was accompanied by an asymmetric electron distribution being 

localized primarily in the carbon 2p-orbital. The calcu­

lated charges in the Tr-bond were C (+0.71), Si (+0.71) and 

C (+0.81), Si (-0.81) with and without d-orbitals. 
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respectively. The charge over the whole molecule was cal­

culated to be C (-1.1) and Si (1.6) when d-orbitals were 

included. Curtis pointed out that a carbanion-siliconium 

ion bond polarization seemed to explain the data much better 

than a diradical, which had earlier been proposed (6, 15). 

The Ciroo method which contains coulombic interaction 

(EliMO includes only overlap integrals) , showed the carbon-

silicon double bond to be quite polar, but much less so than 

in the former EHMO calculation. The 7r-bond polarity of 

silaethylene was C (+0.264), Si (-0.264), compared to that 

of formaldehyde which was C (0.158), O (-0.158). The 

dipole moment calculated for CH2'-SiH2 by CNDO method was 

2.99 D. 

Another way to examine the strength of the 7r-bond, 

theoretically, was by measuring the barrier to rotation of 

one end of a 7r-bond with respect to the other end. The re­

sults with and without d-orbitals revealed the ordering of 

TT-bond strengths as C=Si < Si=Si < C=C. This agreed with 

conclusions based on the previous population analyses. 

The resulting effect of twisting the planar molecule 

was a separation of the bonding tt MO into "TT^" and 

components. The degree of separation determined whether 

the singlet or triplet state existed. In twisted sila­

ethylene, the singlet state was calculated to be the lowest 

energy excited state. This was consistent with an 
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exceedingly polar ir-bond with the electrons remaining 

localized on carbon when it was twisted. The dipole moment 

was, of course, predicted to be lower than the one calcu­

lated with one electron put on both the silicon and carbon 

atoms (triplet state). 

Disilaethylene, not having the asymmetry of sila-

ethylene, was predicted to have the triplet state in its 

twisted shape. Both the CNDO and EHMO calculations coin­

cided with this conclusion as to multiplicity. They were 

also in accord with the strength of the ir-bond as determined 

from its rotational barrier and had the same order, C=Si < 

Si=Si < C=C, as found with overlap integrals. 

The high polarity of silaethylene should result in a 

head to tail dimerization and the calculated LUMO and HOMO 

with their contributions of each orbital, indicated a net 

positive overlap (bonding), which was expected between the 

LUMO and HOMO. The conclusion drawn from these results, in 

general, was not only the probable existence of sila-

alkene, but also it was predicted to have a singlet energy 

state with considerable polarity in the molecule. 

Experimental evidence for the transient existence of 

the silicon-carbon double bond could be found as early as 

1914 when Schlerik and Renning (5) reported dehydrating 

diphenyImethy 1 si 1 ano 1 to form the diphenylsilaethylene. 

However, when reinvestigated. Kipping (15) found that the 
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product was the siloxane formed by the loss of one molecule 

of water from two molecules of silanol, a very common re­

action. No evidence for the desired elimination was found 

in either the vigorous reaction of phosphorus pentoxide or 

zinc chloride. Heating tribenzylchlorosilane with di­

methyl aniline or quinoline also produced no elimination. 

Attempts by West (17) to produce silabenzene from catalytic 

dehydrogenation of silacyclohexanes with platinum and 

palladium catalysts demonstrated that the degradation led 

to mixed olefins above 500°C, with no reaction occurring at 

lower temperatures. 

Fritz and Grobe (18) reported isolation of a molecule 

containing a s il icon-carbon (p-p) ir-bond by pyrolyzing 

tetramethylsilane to give 2,4,4-trimethyl-2,4-disila-2-

pentene (6) which reacted with bromine and hydrogen 

A 
Si - Me 

I 

Me - Si 

Me 

(7) 

Me^Si A Me^Si- + Me 1 

Me^Si + Me* -+ Me^SiCH^» f CH^ 2 
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MegSiCHg. Me- + Me^SizzCRg 

Me 

Si - Me 

ZMe^Si= CHg 

Me - Si 
I 
Me 

(7) 

bromide. Later work proved (19, 20) that the product was 

1,1,3,3-tetramethyl-l,3-disilacyclobutane (%). Fritz 

et al. (21) proposed that the correct mechanism for this 

reaction involved the diradical which dimerizes to the 

product (%) observed. No attempt was made to explain why 

only the dimer was formed from diradicals. The same 

product formed in the catalytic (iron/copper) dechlorina­

tion of tris(trichlorosilyl)chloromethane at 250°C (22, 

23). The diradical mechanism of Fritz and Grobe was assumed. 

Another investigation by Kumada showed halomethyl 

substituted disilanes eliminated with sodium ethoxide to 

form the ethoxide (24). A mechanism involving the 

silaalkene with addition of ethanol was offered, but an 

alternative mechanism without the silaalkene was later 

proposed by the same workers (25). Alternative explanations 

(26) have also been offered to the proposed (27) silaalkene 

intermediate in the formation of polymeric products from the 

reaction of dialkyldihalosilanes with lithium. 

Bailey and Kaufmann (28) reported that pyrolysis of 
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allyl trimethylslianes at 500°C yielded propene and sila-

alkene which is trapped by different butadienes as well as 

by itself. This has never been substantiated in literature. 

In fact, there is at least one report (29) of several unsuc­

cessful attempts to reproduce these results. A rather un­

usual Grignard reaction between benzophenone and dimethyl-

silylmethyImagnesium bromide (8) to give trimethylsilyldi-

phenylmethyl ether (9) and pentaphenylmethyldisilane (10) 

PhCOPh + MegSiHCH^MgBr _+ Me^SiOCHPh^ + MegSiHCHgSiMeg 

(8) (9) (10) 

has been reported (30). The silaalkene (11) was thought 

to be the intermediate most likely to explain the products. 

However/ a later report (31) did not favor this intermediate. 

(Me2SiO)„(Me2SiCH2)„ 

(12) 

Still another report (32) of a silaalkene being an 

intermediate was the pyrolysis of cyclic siloxanes (12) 

which form 1,1,3,3-tetramethyl-l,3-disilacyclobutane (7). 

Mass spectral data has been given as evidence for 

species with (p-p) ir multiple bonding involving silicon 

CH, 

CH 
\i=CH2 

(11) 
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(33). The electron bombardment of 1,1,1,3,3,3-hexamethyl-

2/2-disubstituted-l,3-disilanes (]^) gave very strong peaks 

at M -30-R. The ions with these masses were consistent 

e~ , 
MegSiCR^RgSiMeg [MSgSi = — SiMeg] 

(13) (14) 

with an allyl type cation (14) with a Si-C double bond. 

However/ if d-orbital participation stabilizes multiple 

bonding, as suggested (34), it was almost certain to occur 

here. Dimmel's other suggestion of the allyl cation need­

ing a Si-C double bond contribution seemed much less con­

vincing, as vinylsiliconium ions could be an adequate 

explanation. 

+ J. 
R~G^C — SiR— -<• R—C — G^SlR— 

A \ 2. Z \ 
R R 

One of the most dramatic pieces of evidence for the 

transient silaalkene comes from the pyrolysis of 1,1-

dimethyl-l-silacyclobutane (3^) (35), following a similar 

reaction which has been well-studied in the all-carbon sys­

tem (36). The silicon system 7iad been studied by Nametkin 

and co-workers (35) who found polymerization occurred when 

heating the above compound (1^) neat at 160-180°C. However, 
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at a "higher temperature in the gas phase, ethylene and 

1,1,3,3-tetramethyl-l,3-disilacyclobutane were the sole 

products (37). The dichloro-analogue, 1,1-dichloro-l-

silacyclobutane, gave ethylene and the 1,1,3/3-tetrachloro-

1,3-disilacyclobutane (38) to show its generality, 

A mass spectral analysis of (15) (39, 40) indicated 

that the transient silaalkene was an independent species. 

The mass spectrum of 1,1-dimethyl-l-silacyclobutane (Table 

1) showed a metastable loss of 28 (CgH^) to form the base 

peak at m/e 72 [Me2Si=CH2]^. That this species might exist 

was further substantiated by a stoichiometric measurement 

of products in copyrolyses with water to form silanol (41), 

with ammonia to form silylamine (41) and with dienes to 

readily form the Diels-Alder adducts (42). Kinetic data 

(43) confirmed the mechanism involving silaalkene as did 

the inhibition of the formation of the disilacyclobutane by 

addition of ethylene and propene (44, 42). No polymeric 

products resembling those expected from diradical species 

were observed and it was concluded that the bonding with 

silicon was of the (p-p) tt type. 

The isolated species came late in 1971 when Barton and 

Mcintosh (45) pyrolyzed the 1,1-dimethyl-l-silacyclobutane 

(1^). The apparatus, similar to that described by King 

and co-workers (46), allowed especially short contact times 

and collection on a cold (-196°C) sodium chloride plate. 
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Table 1. Mass spectrum of (15) (38) 

m/e Rel. Int. 

101 1.9 

100 16.9 

86 1.0 

85 7.8 

74 3.8 

73 9.6 

72 100 

71 4.8 

70 3.9 

68 1.0 

60 1.0 

59 12.4 

58 2.9 

57 3.6 

56 1.1 

53 1.9 

46 1.0 

45 5.1 

44 23.4 

43 18.5 

42 3.0 

39 1.0 

31 2.2 

29 5.1 

27 1.3 

Metastable M'''100-28 ^e2Si=CH^'^* 
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Vacuum pyrolysis at 650°C and collection on a clear NaCl 

plate allowed an ir spectrum to be taken which contained 

an additional peak to those of starting material, ethylene 

and 1,1-dimethyl-l-silacyclobutane. The strong peak at 

1407 cm~^ disappeared after warming to (-120°c) and did not 

recur upon cooling to -196°C. This peak was tentatively 

ascribed to that of dimethylsilaethylene which indicated 

a rather polar bond. 

Kinetic studies (47, 43) of the pyrolysis of tri-

methylsilane (lj6) has shown that 1,1,3,3-tetramethyl-l/ 

3-disilacyclobutane (7) is formed and the following complex 

mechanism has been offered. 

Me^SiH Me^Si" + H' 

(16) 

Me^SiH 'CHgSiMeg + CH^' 

H. + MegSiH -> "CHgMegSiH + Hg 

CHg. + Me^SiH .CHgMegSiH + CH^ 4 

.CHgSiMegH + HMe^Si" h- Me^SiH + CH^ = SiMeg 5 

(11) 
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.CHgSiMegH + MegSi. _+ Me^SiH + CH^ = SiMeg 6 

"CH^SiMe^H + .CH^SlMe^H n- Me^SiH + CH^ = SiMeg 7 

2CH2 = SiMe? -y (7) 8 

Such experimental data has recently been used in theo­

retical investigations of the nature of the (p-p) tt bonding 

silicon, when Walsh (49) used thermodynamic kinetic data 

of Flowers and Gusel'nikov (41) and Davidson and Lambert 

(47, 48). The limits on Dtt were increased to account for 

maximum experimental errors. The value of Drr was found to 

be 133 + 22 kJ/mole. This was very similar to that esti­

mated by Jackson (50) who used previously measured dis­

sociation energies (51) of diatomic molecules Cg, CSi, Sig 

whose values were 144, 104, and 75 kcal mole"^ respectively. 

Jackson admitted the possibility that these might be a crude 

measure due to possible differences in hybridization be­

tween these diatomic species and "pure" organic molecules. 

However, he felt it significant that D (Me-Me) plus the 

TT-bond energy in ethylene equaled 147 kcal mole"^. This 

indicated that the diatomic Cg was essentially a doubly-

bonded molecule where D (Sig) was only 8 kcal mole"^ greater 

than the "pure" single bond value in the corresponding 
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(Me^SiSiMe^) • This disclosed that ̂ -overlap was very poor 

in the case of two silicon atoms. The case of Si=C was 

believed to be intermediate with a value of 28 kcal mole"^ 

which was about half the value for ethylene. This did not 

suggest that the diradical form might be more stable, but 

only that reaction with other molecules including those of 

its oivn kind should be extremely facile. 

The majority of reports of generation of silaalkenes 

has been by thermal degradations. However, there are some 

reports of photochemical generation of the (p-p) Tr-bonded 

species. The first example was reported by Barton and 

Kline (52) and will be explained in the results and dis­

cussions of this thesis. A second report (53) followed with 

the photochemical dehydrosilation of pentaphenylmethy1-

disilane (1/7). It was reported that this intermediate of 

PhgSi^CHg (1) was the first such example produced photo-

chemically. The addition of methanol and d^-methanol pro­

vided substantial evidence for a species consistent with 

the diphenylmethylenesilane (3). 

hv 
PhqCSiPhr, [Ph.Si=CH^] Ph^Si-CH^D 
^ I 2 MeOD •- 2, i 2 2| 2 

Me OMe 

(17) (3) 

The third example by the same authors (54) recorded quite 



www.manaraa.com

17 

similar results by photolyzing 1,1-diphenyl-l-silacyclo-

butane (^8) in the same solvents MeOH, although this re­

action provides cleaner products. 

n Si-Ph l"Ph„Si=CH„] -V  Ph_Si-CH_D 
MeOû 2 z z I / 

I O 

Ph Me 

(18) 

The silicon-oxygen double bond also represents a case 

where (p-p) vr-bonds supposedly exist. Beattie and Gil son 

(34) proposed that the occurrence of a compound whose 

structure was such that the efficiency of filling of the 

d-orbitals was not affected by polymerization, might well 

be expected to exist. îlie reports of the silicon-oxygen 

double bond started back in 1866 with Dilthey (3) who 

treated diphenyldichlorosilane with water to form the diol. 

Upon heating to 140°C there was thought to be formed 

diphenylsilanone (PhgSi^O) (1) but examination (16) of the 

molecular weight showed it to be the trimer. Subsequently, 

several reports have been made of the silanone being pro­

duced and these in turn have been followed by a closer ex­

amination which refute the isolation of the silanone species. 

Kipping (55) reported benzylethyldichlorosilane produced the 

monomer (1^) but it was later reported (56) that the observed 

species was actually the trimeric form. Similar procedures 
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PhCHgSiEtClg -+ PhCHgEtSiz: 0 

(19) 

( 4) were utilized to produce the trimeric form with di-

benzyldichlorosilane. Stock and co-workers (57, 58) found 

comparable results with hydration of dibromosilane except a 

polymer resulted. They proposed the existence of the 

monomeric silanone (prosilanone) in equilibrium with the 

polymeric form but this has never been substantiated. 

Sommer and Tyler (59) found one silandiol (di-t-butyl-

silandiol) which would not polymerize upon distilling 

(210°c) but no evidence was ever obtained for the produc­

tion of the monomeric species under a variety of conditions. 

Beatty and Gilson (34) advocated that the polysiloxanes 

are more stable than the monomeric species due to (d-p) 

TT-bonding in the polymer. They also proposed that if the 

d-orbitals could be used that perhaps the silanone could be 

an isolable species. 

Some experimental evidence was accrued which implies 

the existence of the multiply bonded silicon-oxygen species. 

Silicon monoxide has been observed (60) with a mass spectrom­

eter when silicon dioxide and silicon were heated at 1200-

1950°K. In fact, some reactions with organic molecules have 

been investigated and reactions resembling those of both 

silylene and silanone were observed (61). 
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Pyrolytic studies by Davidson and Thompson (62) of octa-

methyltetrasiloxane have produced the cyclic trimeric and 

(Me^SiO)^ Me^SiO + (Me^SiO) ̂ (MegSiO)^ (MegSiO)^ 

pentameric forms. He indicated :his occurs by way of loss 

and gain of the intermediate monomer ic dimethyl s i 1 aketone. 

Similar evidence had been cited in heating cyclic siloxanes 

which have some methylene groups between two silicon atoms 

(63). The reaction was complicated by the production of 

products that could be explained by the silaalkene also 

being formed. 

Barton, Mcintosh, and Kline (64) reported the reaction 

of ketones (acetone and 3-pentanone) with 1,1-dimethyl-l-

silacyclobutane in copyrolyses experiments. At 500°C only 

one product, produced in small amounts, had the molecular 

weights of the ketones plus m/e 72 (MegSi^CH^) which were 

later found to be trimethy1silylenolates produced from 

reaction of Me2Si=CH2 and the enol form of the ketones. 

At 700°C none of the products (M^ ketone + 72) were ob­

served, but several components having characteristic mass 

spectra of cyclosiloxanes were formed. A mechanism in­

volving the intermediacy of a silanone was suggested and 

further corroborated (65, footnote 4) by formation of 

styrene in the copyrolysis of benzaldehyde and cyclobutane 
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generator ( . 

Me Me O 
\ / II 
Si + c 

II / \ 
CHg Rg 

Comparable results came later (54, footnote 5) when 

it was reported that heptanal reacted under like conditions 

at 600°C to form only hexamethylcyclotrisiloxane and 1-

octene. A later publication (65) reported that an enolizable 

ketone (methylpropylketone) under similar conditions gave 

only the two isomeric trimethylenolates. This was quite 

different from the results with enolizable aldehydes but 

this dichotomy was not discussed in any detail. One non-

enolizable ketone benzophenone did produce the trimeric 

cyclic siloxane (MegSiO)^ and the olefin (styrene) having 

an additional methylene group. 

Silicon has been observed to be (p-p) Tr-bonded to atoms 

other than carbon. In 1959, Peddle and co-workers (67) re­

ported the syntheses and pyrolyses of 7,8-disilabicyclo 

(2.2.2)-2,5-octadienes. Using the dianions of biphenyl, 

naphthalene, and anthracene plus dichlorotetramethyl-

disilane, the bicyclic systems were prepared. Upon heating 

the pure aromatic with the bicyclic compounds, new Diels-

Alder's products were formed. A more thorough report (68) 

explained the 1,3-disilacyclobutanes in terms of a 

Me 

Me -"si - O 

I 
Rn 

R, 

Me R, 

->• [Me - Si = O] + ̂  

(MejSiO)^ R, 
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migration of H back to silicon and formation of disila-

cyclopropane. Reaction with conjugated dienes such as 

labelled anthracene and 1,4-diphenylbutadiene, gave the 

corresponding Diels-Alder products which provided strong 

evidence for the (p-p) rr-type double bond between the 

silicon atoms. Mass spectral data showing very strong 

peaks for tetramethyldisilene {21) species gave additional 

strength to their conclusions. 

Me Me 
Si - Si( 

Me"' Me 

(21) 
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RESULTS AND DISCUSSION 

Silaalkene Generator 

The transient existence of compounds containing a 

silicon-carbon double bond seemed quite probable from the 

preliminary work of Flowers and Gusel'nikov (43) and Barton 

and Mcintosh (45). Therefore, a much more thorough inves­

tigation was warranted. This study was to include a prep­

aration of silaalkene by an independent route with more 

reactions to examine its properties. 

There are at least two factors which limit the use of 

1,1-dimethyl-l-silacyclobutane, as the synthetic generator 

of the dimethyImethylenesilane. Perhaps, the most important 

undesirable feature of this reaction is its reversibility. 

The addition of excess olefin has been shown to completely 

inhibit any of the cyclic dimer (%). When such mixtures 

are present, the data is often much more difficult to 

interpret, in the case of flash pyrolysis, where one must 

separate out bands of other species, the presence of start­

ing material further complicates the ir spectrum. The re­

versibility also impairs the yields of the reactive sila­

alkene and the separation is more difficult with more com­

ponents. The second limiting factor in using the 1,1-di­

methyl-l-silacyclobutane is the rather high temperature (500°C) 

required to thermally degrade it. There may be many 
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interesting reactions, the products of which will simply 

decompose in this temperature region. 

While the undesirable features are obvious, there are 

some things that can be said in favor of this generator. 

It is to date, the only system that can produce the sila­

alkene in any quantity. It is quite easy to prepare and 

the synthetic procedures are quite general with regard to 

varying substitution on the silicon. Also ethylene, a 

product in the thermal degradation, is easily disposed of. 

It would be convenient to have a generator which would 

produce a product not reactive to the coformed silaalkene, 

once the degradation takes place. Also, a system that 

would generate the silaalkene at lower temperatures, ther­

mally, and/or photochemically, would be most desirable. 

One case very similar to a silicon-carbon double bond gen­

erator, was tetramethyldisilene (^1) generated from dif­

ferent bicyclic generators (22). The aromatic product was 

somewhat resistant to reaction with the disilene (21). The 

Me Me 

A Me Me 
/ 

/ \ 
Me Me 

( 2 2 )  (21) 
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order of ease of thermal degradation was anthracene > 

naphthalene > biphenyl. This follows the dienic character 

of the three species, biphenyl being the least dienic and 

the most aromatic. The general preparation (68) of the 

disilabicyclics (22) involved the reaction of the dianion 

and the dichlorotetramethyldisilane. 

Me 
I  

+ CI - Si - Me 
I  

CI - Si - Me 
I 
Me 

( 2 2 )  

The analogous reaction using chloromethyldimethyl-

chlorosilane (gS) was attempted in our laboratory using 

the same procedure (67). Analysis of the product mixture 

by gems indicated a significant amount of the possible 

product (24/ n=l) with M^ 200, However, other peaks in 

e 

00 
© CI 

(23) 

Me Me 

Si 

(24) 
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the gas chromatograph nearly as large as that of M 200, 

indicated compounds with n=2 and 3 (M^272 and M^344). 

While it is quite possible that this procedure might be 

found suitable, other methods have been devised which make 

this reaction less attractive in terms of its generality.. 

Silahexadienes have been prepared (69) by a rather 

long, tedious, and expensive sequence of reactions which 

Cl^SiH + zr CH2CH2CH2CI Cl^SiCH^CHCHgCHgCHgCl 

Mg/Ether 

k ..J 
Si 

/ \ 
CI CI 

Si 
/ \ 

CI CI 

! 

Si 
/ \ 

CI Cl 

1. N3S 

2 .  
Si 

Cl'^ ^C1 

(25) 

provided a way to get substitution on silicon. One example 

(69) of a Diels-Alder reaction of the diene with maleic 

anhydride to form the bicyclic adduct was reported. The 

very poor yields of the thermal dehydrobromination (18.4%) 

and the mixture of products made this procedure quite costly. 

1,5-Diazobicyclo (5.4.0) undec-5-ene (DBU) is a good de-

hydrohalogenation agent giving yields substantially higher (70) 



www.manaraa.com

26 

than the 18% reported in the pyrolytic method (69). The 

procedure of Behkeser was altered somewhat by the follow­

ing steps. 

MeMgl 

Si 
/ \ 

CI CI 

Si 
/ \ 

Me iMe 

1. MBS 
>• 

2. D3U 
'Si 
/ \ 

Me Me 

(25) (26)  

The overall yield of diene (26) from 1,1-dichloro-l-

silacyclohex-2-ene (^5) by this new method is 11.2% com­

pared to 0.27% yield of 1,l-diphenyl-l-silacyclohexa-2, 

4-diene. This comparison of methyl with phenyl substitution 

is somewhat dubious, but little effort was spent on maximiz­

ing it and small volumes were involved. 

The diene (26) was added to hexafluoro-2-butyne (27) 

to produce 2,3-bis(trifluoromethyl)-7,7-dimethyl-7-silabicyclo 

(2.2.2) octa-2,5-diene (28) in 64% yield. The structure 

was identified by its nmr(ô), 0.11 (s, 6H), 0.48 (d, 2H, 

J=3.8Hz, SiCH^), 3.58 (d, IH, J=6.5Hz, SiCH), 4.12 (m, IH, 

ŒgCH), 6.16 (m, 2H, CH=CH). That the structure is none 

of the following cannot be absolutely ruled out. The 
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+ CF^C = CCFg 
60°C 

Si 
/ 

Me Me 

Me Me 

•dP. 

(26 /  (27) (28) 

Me Me 

multiplet of the bridgehead hydrogen not adjacent to silicon 

in (29) would be expected to be more defined, while the 

bridgehead hydrogen adjacent to silicon in the same struc­

ture, would be expected to be more complex than the observed 

doublet with allylic coupling. The bridgehead hydrogens of 

(30) probably have greater separation than observed, but 

(31) is quite difficult to eliminate. In fact, all repre­

sent possible silaalkene generators that might be synthe­

sized independently. 

A long period of time followed before another method 

of preparing the diene {26) was developed. Therefore, much 

preliminary work was done using the compound produced in 

this long series of reactions. 

The solution to a better yield of the silacyclohexadiene 
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came by way of an unpublished result from the laboratories 

of Dr. William Atwell, Dow Corning, Midland, Michigan. The 

reaction involved that of the silylene generated from tetra-

chlorodimethyldisilane (3^) and cyclopentadiene. The 

CI -

CI 
I 
Si -

I 
Me 

9 
Si 

I 

Me 

- CI + fl \ 
A 

Si 
/ \ 

Me CI 

(32) (33) 

tetrachlorodisilane (3^2) presumably formed the methyl-

chlorosilylene species which somehow inserted and was fol­

lowed by a ring expansion to (33^). Similar reactions have 

since been reported (71). 

r\  + sigcig 

ll + Si.Cl 2 "6 C 

o 

A 

A 

+ SiCl, 

CI CI 

+ SiCl, 
"sf 
/ s 

Cl Cl 
Cl ,C1 
Si o ./Cl Cl 

Si: 
Cl 

ci ' Cl Cl 



www.manaraa.com

29 

When a similar procedure (72) used in making tri-

chlorotrimethyldisilane was utilized to prepare the tetra­

chlorodimethyldisilane, a mixture of the tetra- and tri-

chloro species was obtained in 78.1 and 21.9 mol % yields, 

respectively. 

This mixture reacted with cydopentadiene at the sug­

gested 525°C to give both 1-chloro-l-methyl-l-silacyclo-

hexa-2,4-diene (21) and 1-chloro-l-methyl-l-silacyclohexa-

2,5-diene (^4). The nmr of the mixture collected at 

Me2Si2Cl^ + /TV + 
) X  

/ \ 
:1 Me 

>1 

Me Cl 

(33) (34) 

constant bp (42°/23 ram) consisted of a mixture of 

Cl^SigMeg (40 mol %), Cl^Si Me^ (21 mol %), 2,4-diene (33) 

(25.7 mol %) and 2,5-diene (^) (13.5 mol %). The isomers 

could be separated and collected by vpc. The 2.5-diene 

(34) was not particularly desirable so the temperature was 

raised in an attempt to get less of this isomer. At 600°C 

a mixture (bp 68-70°/30 mm) of 2,4-diene (82.5 mol %), 

2,5-diene (13.15 mol %) and tetrachlorodimethyldisilane 

(4.4 mol %) was found. Thus this procedure provides a 
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very useful synthetic method for producing silacyclohexa-

2,4-dienes. It not only gives good yields, but also has 

many less steps than the former method (69). One chlorine 

atom on silicon allows general utility with different sub­

stitution on silicon. The mechanism likely involves a 

silylene (^) reacting with a double bond possibly as seen 

in the following manner. The mechanism for the reaction of 

Me Me 
\ / 
Si 

Me CI 
Me ^C1 

Si 
\ / 

Si 

Me CI Me CI 
H 

(34) 

(33) 

silylene with furan seems to be somewhat different. The 

silacyclopropane, if formed at all, always cleaves open 

toward oxygen in the following manner. The use of hexa-
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° if 19-2 rn c-.-' — Cl^S ^ ^ Sici_ "2 
° ' 

^£licl. 

clilorodisilane would provide an additional number of pos­

sible compounds with disubstitutions. It might be the 

method of choice with its reported higher yields if it was 

not for the very high cost of hexachlorodisilane. 

The fact that the Russian workers (71) failed in adding 

only one silylene to furan was most unfortunate, as the 

formation of the cyclic dienes with oxygen, sulfur, and 

nitrogen had appeared quite interesting as generators of 
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dimethylsilicon oxide (^), dimethylsiliconthioxosilane 

(3^)/ and dimethylsilicon imide (38), respectively. 

MegSi = O MegSi - S MegSi = NH 

(36) (37) (38) 

One feature of this reaction that is particularly 

undesirable is that hydrogen chloride polymerizes cyclo-

pentadiene quite easily. This prohibits the prior mixing 

of the two starting materials which is no great problem. 

The more serious disadvantage in this procedure is a build­

up of polymer in the heated tube, which puts severe limita­

tions on the amount that can be produced at one time. 

There has been (73) considerable success with tetra-

methyIdimethoxydi s ilane as a silylene generator. It limits 

the use of the resulting diene in terms of substitution, 

but the requisite disubstitution is desired in many cases. 

When dimethoxytetramethyldisilane is mixed with cyclo-

pentadiene, no polymerization occurs in the addition funnel 

or in the pyrolysis tube during reaction. The product 

formed at 600°C in 38 % yield, had a bp 78-80°C/14 ram and 

was identified by comparison of nmr's with an authentic 

sample of 1,l-dimethyl-l-silacyclohexa-2, 4-diene. The 

alkoxydisilanes are quite easily handled which implies 

that tetraalkoxydisilanes and even hexaalkoxydisilanes 
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might be used in the future. 

When the temperature for the dimethoxytetramethyl-

disilanecyclopentadiene reaction was 525°C, the products, 

as with tetrachlorodimethyldisilane, were both of the 

isomeric dienes (2^) and (39) in nearly egual amounts as 

measured by nmr. 

Me^^Si^ (OMe) 2 + W 
525°C 

+ 

Si 
x \ 

Me Me 

(26 )  

Si 
\ 

Me Me 

(39) 

A large amount of hexafluoro-2-butyne was added to 

hexadiene and a bp 78-80°C/14 mm was observed for the Diels-

Alder adduct. One of the really convincing indications 

that 1,1-dimethyl-l-silacyclobutane (1^) would be a good 

silaalkene generator was its results of electron bombard­

ment in the mass spectrometer (28) (39, 40) with the base 

peak of m/e 72 being observed. If the bicyclic compound 

was to be a good generator, a strong peak of m/e 72 was 

also essential and the results are seen in Table 2. 

The strong peak at m/e 72 was, indeed, a good indica­

tion that this was to be an excellent silaalkene generator. 
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Table 2. Mass spectrum of (28) at 70 eV 

286 1 171 3 120 1.5 71 5 

271 0.25 169 2 119 1.5 70 6 

267 0.5 164 3 101 3 69 3 

221 1 163 3 99 2 63 4 

217 6 151 5 95 3 57 5 

214 6 146 2 81 5 55 4 

213 1 145 15 77 23 49 6 

208 5 140 4 76 2 47 5 

195 100 127 2 75 5 45 5 

190 8 126 4 74 4 44 27 

189 2 125 4 73 7 43 15 

176 3 121 3 72 69 

The necessity of degradation of the bicyclic compound 

(28) was eqpially essential, but the exact method for doing 

this was not known. It was hoped that only two products, 

the 1,2-bis(trifluoromethyl)benzene (^) and 1,1,3,3-

tetramethyl-1,3-disilacyclobutane (%) could be isolated. 

Me 

Me - Si—I 
I I 
'— Si - Me 

I 
Me 

(7) 
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The initial studies on the bicyclic compound (28) 

were carried out in sealed tubes. Small amounts of the 

generator (28) were placed in the tubes and sealed under 

a vacuum. Very little reaction took place at temperatures 

up to 285°C, even after three and one-half hours. Only 

after heating at 320°c was there significant thermal degra­

dation observed. Many small peaks were observed in vpc 

analyses, but only the bis-1,2-trifluoromethylbenzene was 

ever isolated. Results with gems indicated small amounts 

of the dimer M"*"l44(2Si) and M'^306 286 + HF (20)]. Rel­

atively small amounts of silicon-containing species were 

observed, indicating polymerization in some way of the sili-

con moiety. The component with M 306 might well be formed 

from the breaking of a Si-C bond and later adding HF. How­

ever, this was not investigated. 

It became evident very early that the high concentra­

tion in sealed tube reactions would not give the desired re­

sults. This paralleled a report of Nametkin et al. (35), who ob­

tained silicon polymer when heating the silacyclobutane at 

180°C in a sealed tube. 

The low concentration, gas phase pyrolyses studies 

using 1,1-dimethyl-l-silacyclobutane (15) have all had one 

common procedural aspect—pressures in the range of one 

—3 
torr (10~ mm). It appeared that such would be the case 

for the bicyclic system {20) as well. Thus, a vacuum 
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system was constructed, so that pyrolyses could be carried 

—3 
out in glass at pressures below 10 mm. 

The initial experiments with the vacuum system were car­

ried out using a Vycor tube 30 cm x 28 mm packed loosely 

with quartz wool. The first experiment was the pyrolysis 

(410°c) of the bicyclic compound (^8) neat at pressures 

—3 
< 10 mm. Three products were observed and isolated in­

cluding 0.0014 g dimer (3.9% theoretical), 0.0838 g xylene 

(95% theoretical) and a large amount of a clear viscous 

material having 292. The dimer was verified by identical 

retention times in the vpc identical mass spectra of an 

authentic sample (74) and hrms (obs. 144.079553, calc. 

144.078892). The xylene was identified by mass spectra 

(M^214 and characteristic peaks of fluorocarbons at m/e 

195, 164, 145, 69). The nmr (m, 7-8 ppm), when expanded, 

showed AA'BB ' pattern with a triplet of doublets consistent 

with the symmetrical structure. The hrms: obs. 214.021812 

and calc. 214.0217704. 

The third component had a 292 and the isotopic 

analysis showed three silicon atoms. The hrms indicated a 

molecule consistent with C^^HggSig (obs. 292.148188, calc. 

292.14988). No siloxane nor fluorine component was obvious 

from the mass spectrum, but peaks at m/e 73, 146 and 204 

indicated oligomeric silicon-containing material. The nmr 

showed more than one silyl methyl around 0.0 ppm & and was 
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of little value. Thus the structure was never completely 

elucidated. 

The temperature was then raised to 500°C and another 

pyrolysis of neat compound {2B) was made. Analysis by gems 

indicated 19 different components, the main ones being 

124 (retro Diels-Alder product), 144 (dimer), 306 

(M^286 + HP) and 214 (xylene). Only after using cyclo-

hexane, pentane, and later nitrogen as carrier gases did 

pyrolysis at 500°C give only two products—the dimer (7) 

and xylene (40) in 76% and 94% yields, respectively. This 

was clear evidence that a silaalkene species similar to 

that of Flowers and Gusel'nikov (43) had been prepared by 

an independent route. The yield of 95% for the xylene was 

a definite indication that reversibility of the reaction 

was not a problem and this should allow for many more in­

vestigations of the R2Si=CH2 species. Indeed, the relative 

ease and low expense of synthesis of the bicyclic generator 

and the obvious advantages of nonreversibility clearly makes 

this way of producing Me2Si=CH2 the method of choice. 

Additional simplicity was found after many experiments 

with the diffusion pump not being effective, due to the 

high pressures of the carrier gas. In fact, the rough 

vacuum was eventually replaced by a positive flow of nitro­

gen gas, which provided distinct advantagesi A vertical 

tube packed with quartz chips was used and one could be 
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much more certain of the relative amounts of materials 

dropped into the hot part of the tube. The certainty of 

having a known concentration or even ratios of concentra­

tions is quite sporadic and uncertain when you must depend 

on vapor pressures of the compounds. 

Barton and Mcintosh (45) reported the pyrolysis of the 

1,1-dimethyl-l-silacyclobutane in a special apparatus which 

was made available to us. Identical procedures were carried 

out on the neat bicyclic system (28) altering the oven tem­

peratures over a wide range. The results indicated no iso­

lation at -196°C of the silaalkene (ir 1407 cm~^) under a 

variety of conditions. The only product observed was the 

dimer (7) and xylene by means of ir comparisons with 

authentic samples. While these results are difficult to 

understand, the absence of any carrier gas in these experi­

ments might help in explaining the difference in results 

of this reaction and the cyclobutane one. 

The feasibility of photochemical production of the 

silaalkene seemed quite attractive considering the possible 

driving force obtained from the stability of the newly 

formed aromatic xylene as well as the absorption of (28) 

observed in the uv at 295 mu, (e_^_ 4 x 10^). Also the 

practicality of generating the silaalkene at temperatures 

lower than 400°C seemed most desirable. 

A small amount (5 {il) of compound was coated on a cold 
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(-196°C) sodium chloride plate. Irradiation with a helium 

arc through quartz cleanly affords the dimer (%) and xylene 

(40) without any evidence for the intermediate silaalkene 

(13.). Even at lower temperatures (28°K), the intermolecular 

reaction of the silaalkene species could not be deterred 

and no 1407 cm~^ absorption was observed. One other experi­

ment feasible for observing the photochemically generated 

silaalkene intermediate was the matrix isolation of each 

molecule. Perhaps the molecule of xylene would be so un-

reactive that it would form and leave the silaalkene in the 

same matrix for observation. Diluting 5 p,l (^8) with 3 1. 

(350 mm) argon, coating a small amount on a sodium chloride 

plate cooled to 8°K and irradiating with an arc through 

quartz resulted in some changes in the ir spectrum, but no 

peak appeared at 1407 cm~^. This experiment was cut short 

when warming too fast resulted in loss of the organic ma­

terials along with the argon. Nevertheless, it seemed 

quite certain that the silaalkene was not completely inde­

pendent of the xylene part of the generator when contained 

in the matrix. Whether a gaseous irradiation experiment 

can be devised to coat a mixture of argon, photolytically 

generated silaalkene and xylene on a cold (8°K) plate to 

separate and isolate the silaalkene is not yet known. 

The photochemistry of the bicyclic generator (^8) in 

solution has been somewhat less productive. Irradiation 
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with 2537 A in quartz nmr tubes of solutions of generator 

(28) and cyclohexane afford only traces of the dimer (%) 

and considerable amounts of xylene as analyzed by gems 

which implies silaalkene (jy^) formation. 

When acetone was used as solvent for the photolysis, 

a mildly exothermic reaction was observed. This exothermicity 

was also observed when mixing 4-methyl-2-pentanone and 

heptanal, but not when added to benzaldehyde or benzophenone. 

The one property in common vith the compounds which do pro­

duce exothermic reactions is that they are enolizable. This 

explanation was substantiated in similar observations with 

methanol (MeOH). The structure of the adduct of MeOH and 

(28), however, could not be completely defined. 

When carbon tetrachloride was used as solvent, analysis 

by gems indicated chlorosilanes were formed in the photolysis 

of (28). This was a good indication of free radicals. One 

method of testing for these is reaction with spin traps. 

N-t-Butylphenylnitrone (^) initially prepared by E. G. 

Janzen of the University of Georgia, Atlanta, Georgia, is 

such a compound known to trap radicals. The stable radical 

Ph o 
R. C - N 

R 
H 

(41) (42) 
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(42) is produced and has characteristic esr spectra. Nitro­

gen has a spin of 1 and accounts for a triplet while hydro­

gen has a spin of 1/2 and splits this triplet into a triplet 

of doublets. The results of photolysis of (28) with 2537% 

light from the Rayonette indicated significant absorption 

in a triplet of doublets. It was clear proof that radical(s) 

had been generated and one set of splitting constants were 

a^ - 3.5 G and a^ = 15 G. It was seen that all the peaks 

were not of equal height which would not be the case if 

only one radical was formed in the reaction. The first 

spectra from irradiation at 2537& for a short time had the 

greatest deviation from equal peak heights, which indicated 

two or more components with fortuitous overlap in some 

peaks. One might envision that silyl radicals are formed 

and trapped by the nit rone. The other radical might be the 

carbon radical formed in the same hemolytic cleavage process. 

As to which radical accounts for which splitting is only 

speculation and more experiments need to be performed. To 

be absolutely sure that the generator produces radicals one 

must run a blank at 2357A of a mixture of benzene and 

nitrone. Secondly, it is essential to photolyze a confound 

known to produce silyl radicals. Examination of the value 

of splitting constants must be compared to see if they are 

consistent with those found in the photolysis of (28). 

These investigations would have been carried out, but the 



www.manaraa.com

42 

supply of nitrone was not available. 

Other properties of the silaalkene might be observed 

through reactions with a variety of molecules. Addition of 

butadienes (43) is known, thus unsubstituted, gaseous 

butadiene (^/ R=H) was used to find the conditions neces­

sary to completely suppress formation of dimer in favor of 

what was assumed to be the Diels-Alder adduct (^). Thus 

(44) was not characterized. 

Me Me R R 

R 
R 

7 V Si 
/ \ 

Me Me 

(11) (43) (44) 

Butadiene and 0.031 g of generator were added together 

through a Vycor tube at 500°C with a pressure on the pump 

side of a nitrogen cooled trap of ~ 2 mm. Too much butadiene 

was used although its evaporation at room temperature made 

it easy to concentrate the products. Complete suppression 

of the formation of the dimer was observed and three com­

ponents including M^108 (butadiene dimer), M^126 (sila-

cyclohex-3-ene) (M) and M^214 (xylene) were present, based 

on the mass spectra. 
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Reactions of Silaalkene and Their Mechanisms 

The initial investigations of reactions of the sila­

alkene were made with small amounts of generator (both 

cyclobutane and bicyclic). These were analyzed by a gas 

chromatograph-mass spectrometer (gems) which did not give 

full proof of structure, but was very useful for following 

the reactions. Table 3 is a summary of the preliminary 

results using the bicyclic generator (^8), while the 

cyclobutane generator (1^) results are found in Table 4. 

At first, a vacuum system was used to allow introduc­

tion of the materials into the system by means of their 

own vapor pressures. This was undesirable for many rea­

sons, including irregular addition of compounds, which re­

sulted in lowering the tanperature inside the tube, as 

evidenced from no decomposition of the generators. One 

somewhat surprising result was dimerization, in preference 

to reaction with cyclohexene. 

The reaction with cyclopentadiene was of interest, not 

so much out of novelty, as for its usefulness in other work. 

It was interesting that when cyclobutane generator was used 

at 600°C, two different peaks in the gems had 138 in 

about equal amounts. Whether one isomer was a rearranged 

product of the Diels-Alder adduct or a 2 + 2 adduct was 

not determined, but some rather simple experiments might 

be run. The bicyclic generator at 425°C gives only one 
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Table 3. Preliminary results of copyrolyses (425°c) with 
bicyclic generator (28) 

Number Temp Vac./N^ Reactant (likely 

(°C) 

1. 500 Vac. y/ ^ M 126 (silacyclahexene) 

2. 500 Vac. MegOzO M'^130 

3. 500 Vac. CO2 M^144 (dimer) 

4. 500 Vac. ClgC^CHg m'''144 (dimer) 

5. 500 Vac. 144 (dimer) 

6. 425 Ng 138 (2.2.1) 

7. 500 N„ PhCHO 104 PhCH=CH., m/e 
2 — ^"2 

207 (MegS 

(MegSiO)4 

207 (MegSiO)^, 281 

8. 500 X V 172 
2 

O 

9. 500 M/e 207, 281, 221, 
^ II 279, 112 

O 
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Table 4. Preliminary studies of copyrolyses with 1,1-
dialkylsilacyclobutane 

Number Temp Vac./N- Reactant (likely 

(°C) 

1. 

2 .  

3. 

600 

600 

500 

Bu MeCOMe M^200 + M'^211 

Me MeCOMe M^130 (TMS enolate) 

Me M 138 (2 different 
isomers) 

4. 

5. 

6. 

7. 

600 

600 

660 

520 

BU // Y 

Me 

Me 

O 

222 (2.2.1) 

Me // \\ 3 peaks M 138 (isomers) 

M'^156 + M'''236 
(siloxane) 

M'^172 + M'^222 
(siloxane) 

isomer (the bicyclic Diels-Alder adduct), which is dis­

tinguished from the other in its mass spectrum by the 

presence of m/e 72. 

A larger scale preparation with the bicyclic generator 

(28) at 425°C and excess cyclopentadiene gave yields (from 

vpc) of 97% xylene (^) and 55% of 2,2-dimethyl-2-silabicyclo 
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Me Me 

3 + 

CF 
3 

Si - Me 
\ 
Me 

( 28 )  
(45) (40) 

(2.2.1) -hept-5~ene (^) . 

One of the properties of the silicon-carbon double 

bond deemed most probable is its polarity. Curtis has sub­

stantiated this with calculations (12) and Barton and 

Mcintosh (45) have supplied experimental data consistent 

with this assumption. The reaction with itself in a head 

to tail fashion also gives credence to the dipolar species,-

Polarity might also be investigated by reacting it with 

another compound with known polarity. One functional group 

known to be polar is the carbonyl group. This group has 

dipole moments in the range of 2.4-3.8 D (75) with oxygen 

negatively charged and carbon positively charged. 

Addition of a carbonyl group to silaalkene would be 

most interesting. It would produce the first dimethyl-

siloxetane (^) (a four-membered ring with silicon and 

oxygen), whose properties in themselves would be of 

interest. It would show the preferences of the reaction 

which might reveal information about its polarity. This 
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R 

R 
I 
Si - R 

O 

R 

(46) 

siloxetane might be a good generator of siloxane whose 

properties are not yet well-defined. 

Preliminary results in Table 3 of copyrolysis of the 

bicyclic generator and acetone indicated formation of a 

compound having 130 (72 + 58). The mass spectrum re­

sembled other trimethylsilyl ethers (76) with ions at m/e 

103, 93, 75, and 73. Originally, copyrolysis was in a 

vacuum system with large amounts of acetone necessary to 

get over the less volatile generator. The pressure meas­

ured with a McLeod gauge was a combination of the two 

liquids, and consistent results were impossible. Conse­

quently, the relative amount of component (M^ 130) compared 

to solvent, was so small that collection was impossible. 

In fact, the peak would disappear after only a few injec­

tions in the vpc. Other ketones were used and their re­

sults are also shown in Table 3. It can be seen that a 

variety of ketones and generators gave small amounts of 

adducts of the silaalkene and the ketone. The exact 

structure could not be determined from the mass spectrum 

alone, thus other methods had to be used to get more 
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isolable compound. 

Copyrolysis in a vertical tube with nitrogen provided 

a way to regulate each of the reactants and the flow rate. 

The vapor pressures of the components did not greatly af­

fect the results which were quite reproducible under these 

new conditions. Yields were never measured for the neat 

pyrolysis, but 97% yields of the xylene were obtained in 

several copyrolyses and it can be assumed that the yields 

would be as high when no reactive component was used. 

Since the production of bicyclic generator (^) at 

first was much more difficult than the silacyclobutane (15), 

the latter was used in many initial experiments. The best 

conditions, retention times, and other properties could 

then be duplicated and compared with those of the bicyclic 

generator (28). 

One reason for so many different systems being used 

was that the retention times of the starting silacyclo­

butane s and the adduct were too close for good separation 

on the vpc. 

In the case of acetone, the adduct could be separated 

only when very small samples were used at very low column 

temperatures (40-50^^0). When 1,1—di—n—butyl—1—silacyclo­

butane was used, the component having 200 overlapped the 

silacyclobutane peak having 184. Finally, the use of 

4-methyl-2-pentanone with 1,1-dimethylsilacyclobutane 
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produced products which separated sufficiently. In fact, 

with an excess (two-three fold) of ketone, the adduct was 

produced in amounts such that it could be separated and 

later collected. There was always a small amount of ma­

terial of 172 seen with the mass spectrometer. Com­

ponents with much smaller peaks of m/e 221 and m/e 279 

indicated polysiloxanes. After the mixture was vpc'd 

twice, the nmr showed the position and nature of peaks to 

be identical with the nmr of an independently prepared (76) 

sample of the trimethylsilylenolate. 

Very recently, Roark and Sommer (66) reported that at 

500°c the trimethylsilylenolate was formed from 2-butanone 

and (1^) with only trace amounts of the olefin and hexa-

methylcyclotrisiloxane. Our yields of 30% of enolate ether 

compared quite closely to Roark's and Sommer's 35-40%. 

At 700-750°C the results were significantly different. 

Only a very small peak had the same retention time as the 

predicted olefin, but none was ever isolated. Cyclotri-

siloxane (31.8%), cyclotetrasiloxane (52.8%), and cyclo-

pentasiloxane (5.5%) were the silicon-containing species as 

identified by identical retention times and identical mass 

spectra with authentic samples. Two other components, 

benzene (27%) and toluene (20.6%) were identified by equal 

retention times and hrms (obs. 78.04544, calc'd 78.04692 

for CgHg and obs. 92.06260, calcd 92.06259 for C^Hg). The 
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olefin (47) was prepared by pyrolysis of the acetate (48) 

at 600°c. When run at 700°C the olefin did not remain, but 

rather benzene, toluene and xylene were identified. This 

was not the case with the ketone at 700°C under similar con­

ditions. The mechanism for formation of toluene and benzene 

from the olefin (47) is not easy to envision. The transient 

existence of the olefin (^) is substantiating evidence for 

siloxetane (^) in the reaction of silaalkene and 4-methyl-

2-pentanone. 

Me^Si^CHg + 

O 

Me 
I 

Me-Si-

O 

(49) (47) (50) 

KMegSiO)^ 
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However, this mechanistic interpretation is somewhat 

clouded by the fact that the trimethylsilylenolate prepared 

independently (76) and heated at 700°C produces the same 

products hexamethylcyclotrisiloxane (27.9%), octamethyl-

cyclotetrasiloxane (41.7%), benzene (40%), and toluene (19%), 

It was not until deuterated ketone was used that siloxetane 

could be shown to exist. 

Other carbonyl compounds were copyrolyzed with 1,1-

dimethyl-l-silacyclobutane including 3-pentanone, carbon 

dioxide and benzaldehyde at 700°C. Only the dimer was 

formed when carbon dioxide was used as a carrier gas in 

the vacuum system. The 3-pentanone gave an adduct 158 

(86 + 72) whose retention time was very close to that of the 

ketone. The reaction with benzaldehyde, however, at 600°C 

proved most instructive. A preliminary study showed com­

pounds with peaks at m/e 207 (MegSiO)^, m/e 281 (MegSiO)^, 

m/e 104 (PhCH^CHg), and m/e 355 (MegSiO)^. A larger scale 

reaction showed identical retention times and mass spectra 

with authentic samples and the yields measured by vpc were 

20% (MegSiO)^, 23.4% (MegSiO)^, 37% PhCh^CH^ and 5.0% 

(MegSiO)^. These results are much clearer evidence for the 

siloxetane (5%) than are those of the reactions with 

enolizable ketones or aldehydes. The presence of styrene 

with an additional methylene group to the starting benzalde­

hyde and 50% of the silicon being accounted for in the 
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cyclosiloxane products definitely favors the four-center 

intermediate (51). 

PhCHO + MegSi- CHg 

SiMe, 

Ph 
- O 

(51) 

PhCHzzCH^ + (MegSiO)^ 

The bicyclic generator (28) was copyrolyzed with 

benzaldehyde (four-fold excess) and similar results were 

obtained with 21.1% (MegSiO)^, 43.5% (Me.SiO)., 64% hex-

afluoroxylene, and 29% PhCH^CHg as determined from vpc. 

The low yields of xylene probably indicated that a more 

efficient trap would collect higher yields of all com­

ponents. The small yields of styrene might be due to its 

polymerization, but this was not checked. 

This is the first case of a siloxetane (51) whose only 

property at the present time is its instability at 500°C. 

It is a good example of a generator of dimethyloxosilane 

(50) which might prove to be of value in the future. David­

son and Lambert ( 62) had earlier reported the intermediacy 

of dimethyloxosilane (^) from the pyrolysis of tetramethyl-

cyclotetrasiloxane with cyclosiloxanes as products. 

Roark and Sommer (54, footnote 5; 66) have reported 

copyrolyzing heptanal and 1,1-dimethyl-l-silacyclobutane 
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(15) at 600°C. Yields of 35-40% of both the octene and 

cyclotrisiloxane were noted. They suggested that different 

mechanisms are observed in aldehydes and enolizable ketones. 

In the case of aldehydes the mechanism involves the siloxe-

tane intermediate while with enolizable ketones, only tri-

methylsilylenolate ethers are formed. In no instance do 

they report observing any more than trace amounts of other 

components in each case. 

Being somewhat inconsistent with our results a closer 

examination of the reactions seemed essential. One test for 

the mechanism involved in enolizable ketone copyrolyses 

would be deuterium labeling. The ketone (4-methyl-2-

pentanone) is quite easily deuterated by refluxing in 

DgO/KgCOg mixtures, changing the solutions every day. After 

three days the deuterium incorporation was 86.7% by nmr or 

52% dg, 34% d^, and 14% d^. 

The use of deuterium to detect whether the mechanism 

involves the siloxetane and/or enolate ether and the extent 

that each is taking place can be calculated. The simplest 

case is the siloxetane mechanism. Assuming there is no 

random exchange of deuterium atoms with the silylmethyl 

protons, no deuterium should end up in the final cyclo-

siloxanes. 



www.manaraa.com

54 

CD 2 
CD 3 

f Si 

Me Me 

II CD 
3 

0 
II CD, 3 

II ->• 

+ =\ 

Me Me CD^ 
4 o 

Me 

Any deuterium found in the final cyclosiloxanes would 

be an indication that the enol form had further decomposed. 

The calculations of the amount of deuterium expected is some­

what complicated by the fact that the probability must be 

figured for several species and then added to get the over­

all picture. It is further complicated by the fact that the 

ketone is not 100% dg. The enolate ether will always have 

one deuterium in the trimethylsilyl group if there is 100% 

OD OSiMe.CH.D 
/ / 2 2 

C = C + Me«Si= CH_ -+ C = C -+ Me„SiO+MeSiCH<,D 
I \ 2 2 / \ 2 II 2 
D CDg D CD^ Q 

dg in the ketone. The final product only has two methyl 

groups so there will be a 2/3 chance of keeping a deuterium 

and 1/3 chance of losing it. The actual deuterium incor­

poration expected if 100% dg ketone were used is seen in 

Table 5. 
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Table 5. Calculated relative intensity of (MegSi)^ from TMS-enolate assuming 100% 
enol deuterium 

Specie dg Probability d^ Probability d^ Probability Probability Total 

m/e Contribution Contribution Contribution Rel. Int. 

SiCg (1/3) (2/3) 1/3 +2/3-1 

61 3.4 X  .65 = 2.2 2.2 3.2 
60 2.3 X .33 = 1.1 7.3 x .66 = 4.8 5.9 8.6 
59 7.3 X.33 = 2.4 100 x.66 = 66 69 100 
58 100 X  .33 33 33 47 

SigCj^ (1/3)2 2(1/3) (2/3) (2/3) % 1/9+ 4/9+ 4/9 = 1 

120 6.8%.444 = 3.2 3.2 6.2 
119 6.8 X . 444 = 3.2 14.6 x .444 - 6.4 10.0 19.4 
118 5.8X.11 - 0.8 14.6 X.444 = 6.4 100 x.444 - 44.4 51.6 100 
117 14.6 X. 11 = 1.6 100 x.444 = 44.4 46.0 89.2 
116 100 X.11 = 11 11.0 21.2 
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Specie dg Prob. d^ Prob. dg Prob. dg Prob. d^ Prob. Probability Total 

Cent. Cent. Cont. Cont. Cont. Rel. Int. 

Si-C. (1/3)3 3(1/3)2(2/3) 3(1/3) (2/3) % (2/3)^ 1/27+ 5/27+ 12/27 
•3^5 

179 3.2 
178 9.8 5.6 
177 2.4 8.4 29.6 
176 10.2x .037= 0.4 4.2 44.4 
175 21.9 X.037= 0.7 22.2 
174 100 X .037 = 3.7 

+ 8/27 = 27/27 

3.2 6.5 
10.4 21.2 
40.4 82.5 
49.0 100 
22.9 46.6 
3.7 7.6 

Si^Cg (1/3)4 4(1/3)3(2/3) 6(1/3)^(2/3)^ 4(l/3)(2/3)3 (2/3)^ 1/81 + 8/81 + 24/81 

238 
237 
236 3.6 
235 1.2 8.4 
234 .16 2.8 29.4 
233 .3 9.5 
232 1.2 

+ 32/81+ 16/81 
= 81/81 

2.7 2.7 5.6 
5.2 5.8 11.0 23.0 

11.6 19.7 34.9 72.7 
39.4 43.0 100 

32.3 67.3 
10.1 20.1 
1.2 2.5 
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The first case is a calculation of the relative peak 

heights of the loss of one methyl group from d^-fCHglgSi. 

Based on natural abundances of silicon and carbon and as­

suming no deuterium the relative peak heights would be 

m/e 58 (100), 59 (7.3) and 60 (3.4). Hydrogen and oxygen 

atoms do not contribute significantly to P + 1 and P + 2 

isomers, thus the ratio 100; 7.3: 3.4 will always be ob­

served regardless of deuteriums, oxygens, or hydrogens 

present. Only Si and C are considered in this and future 

tables as these are the only atoms that will affect the 

ratio of peak heights. The Si^C^ species at m/e 174 will 

have the same peak heights as [(CH^igSiOlg at m/e 222. In 

SigC^, the peak heights are m/e 116 (100), 117 (14.6), and 

118 (6.8). These and the other values are shown in the 

first column in each series in Table 5. 

The species which has n-deuteriums always has a (1/3)^ 

and (2/3)^ probability of having O and n deuteriums, re­

spectively where n = no. of silicon atoms. Calculating the 

probability for two (n-1) deuteriums is somewhat more com­

plicated. In the case of SigC^ there is a (1/3) (1/3) 

chance of there being no deuteriums while the probability 

of finding one deuterium is calculated by having no deuterium 

on one silicon (1/3) and one deuterium on the other (2/3). 

There is an equal chance that the deuterium and hydrogen 

are switched and this doubles the chance of finding one 
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deuterium in the whole system. An even more complicated 

case is where n=4 with two deuteriums. Starting on any Si 

atom the respective probabilities are H (1/3), H (1/3), 

D (2/3), and D (2/3). There are six combinations where two 

deuteriums can be found in Si^Cg and this increases the 

chance by six times or 24/81. It is seen that the final 

relative intensities is a sum of the mono-,di-,tri-, and 

tetradeuterated species and the probability is always 1. 

This assumes completely random losses of methyl groups, 

100% dg-ketone and no scrambling of deuterium with hydro­

gens in the molecule. 

The ketone is not completely d^, but rather 52% dg, 

34% d^, and 14% d^. This would affect the peak heights 

and the calculations for these are found in Table 6. 

The tetradeuterated enol has a 4/5 chance of having 

a hydroxylic deuterium, thus the chance of a given peak 

height with d will be reduced by 1/5 or 1/5 x 34% = 6.8% 

from each of the calculated peaks. The likelihood of dg-

ketone having a hydroxylic deuterium is only 2/5 or 2/5 x 

14 = 5.6% of each peak reduced from the 100% d^-ketone 

calculation. Thus a total of 5.6 + 5.8 = 12.4% must be 

subtracted from all peaks except the dg species. This 

subtracted value is the amount present in the species with 

one less deuterium and must be added to the amount of that 

species. In the case of SigC^ nothing is subtracted from 
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Table 6. Calculated relative intensity of (MegSiO)^ from TMS-enolate of 52% d^, 

34% d^/ and 14% d^ methylmethylene ketone 

Specie 
Contribution Contribution Contribution Rel. Int. 

m/e 

Sic, 

61 
60 
59 
58 

1.1+ 1.9= 3.0 
2.4+ 4.2= 6.5 
33.3+ 8.3 = 41.6 

2.2-0.27= 1.9 
4.8-0.59= 4.2 
55.5 — 8.3 - 58.3 

1.9 
7.2 

65.0 
41.5 

3.0 
11.0 
100.0 
54.2 

SizC, 

120 
119 
118 
117 
116 

0.8+0.4 = 1.2 
1,6 + 0.76 = 2.4 
11.0+5.6 =16.6 

3.2 - 0.40+ .40= 3.2 
5.4 - 0.76+ .75= 5.4 

44.4 - 5.5 + 5.5 = 44.4 

3.2-0.40= 2.8 
5.5 — 0.75= 5.5 
44.4 - 5.5 = 38.9 

2 . 8  
8 . 8  

46.5 
46.8 
16.6 

6 . 8  
15.9 
99.0 
100 
35.4 
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Tabl 

Spec 

m/e 

siac 

179 
178 
177 
175 
175 
174 

siaC, 

238 
237 
236 
235 
234 
233 
232 

(Continued) 

Cont. Cont. Cont. Cont. Cont. Rel. Int. 

2.8 2.8 5.8 
4.0 4.9 8.9 18.4 

2.7 7.7 25.9 35.3 75.0 
0.7 4.9 42.7 48.3 100 
1.4 24.9 26.3 52.5 
5.4 6.4 13.2 

2.4 2.4 5.2 
4,9 5.0 9.9 21.4 

3.7 10.7 17.3 11.7 25.2 
1.5 7.8 37.0 46.3 100 

0.32 3.5 30.5 34.5 74.5 
0.66 12.2 12.9 27.8 
2.4 2.4 5.2 
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the undeuterated species peaks (3.7, 0.7, 0.4). The mono-

deuterated species values of 22.2, 4.2 and 2.4 must all be 

multiplied by 12.4% and these values, in turn, added to 

3.7, 0.7 and 0.4, respectively and subtracted from 22.2, 

4.2 and 2.4. The summation of the contribution from each 

species gives the overall ratio of peak heights. A further 

difficulty in determining the relative peak heights is that 

the molecular ion is never observed to any extent but the 

parent ion minus methyl (P-15) is characteristic of the 

siloxanes. This methyl may or may not have deuterium and 

the calculations of relative intensities of the peaks are 

seen in Table 7. 

Taking the Si^Cg species as an example the undeuterated 

species will never lose deuterium, so its calculated heights 

remain unchanged. The monodeuterated species, however, has 

a 1/6 chance for deuterium being removed in the loss of a 

methyl group. The peaks at m/e (24.9, 4.9, 2.7) must be 

reduced by 16.6%. The dideuterated species has a 2/6 

chance of eliminating one deuterium with a loss of one 

methyl group. There is a 2/6 chance that one deuterium 

is lost from the dideuterated species and a 3/6 chance that 

deuterium will be eliminated from the trideuterated species. 

The experimental results with their calculated values 

are listed in Table 8. 
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Table 7. Calculated relative intensity of (MegSiO)^ from TMS-enolate of 52% dg, 

34% d^/ and 14% dg methyl methylene ketone minus one methyl group 

Specie d^ Loss Probability d^ Loss Probability dj^ Loss Probability Rel. Int. 

m/e dg Contribution d^ Contribution 6.2 Contribution 

Sic, (1/2) 

62 
61 
60 
59 
53 

3.0+ 0.9= 3.9 
6.6+ 2.1 = 8,7 
41.6 + 29.2 = 70.8 

1.9- 1.0= 0.9 
4.2 - 2.1= 2.1 
58.3 - 29.1= 29.2 

0.9 
6 . 0  

37.9 
70.8 

1.3 
8.5 

26.8  
100 

312=4 

120 
119 
118 
117 
116 

1.2+ 0.8= 2.0 
2.4+ 1.6= 4.0 

16.6 + 11.1= 27.7 

(1/4) 

3.2 - 0.8 + 1.4= 3.8 
6.4- 1.6+ 2.8= 8.6 
44.4 - 11.1+ 19.5 = 52.8 

(1/2) 

2.8- 1.9= 1.4 
5.6-00.8= 2.8 

38.9 - 19.5 = 19.5 

1.4 
6 . 6  

30.1 
56.8 
27.7 

2.5 
11.6 
53.0 
100 
48.7 
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Table 7 (Continued) 

Specie Loss Prob. d^ Loss Prob. d^ Loss Prob. d^ Loss Prob. d^ Loss Prob. Rel. Int. 

m/e Cont. Cont, Cont. Cont. Cont. 

'^3^6 0 (1/6) (2/6) (3/5) 

179 1.4 1.4 2.8 
178 4.5 2.5 6.0 12.2 
177 3.7 7.6 13 24.3 49.2 
175 1.2 5.7 41.5 49.4 100 
175 2.2 34.9 37.1 75 
174 10.5 10.5 21.5 

0 (1/8) (2/8) (3/8) (4/8) 

238 1.2 1.2 2.7 
237 4.3 2.5 6.8 15.4 
235 4.6 9.2 8.7 22.5 51.2 
235 2.2 9.8 32.2 44.2 100 
234 0.5 5.1 36.9 42.5 96.5 
233 1.1 18.3 19.4 44 
232 3.9 3.9 8.9 
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Table 8. Mass spectra (70 eV) of (MegSiO)^ and (MegSiO)^ 

from the pyrolysis of 1,1-dimethyl-l-silocyclo-
butane and deuterated 4-methyl-2-pentanone 

600°C (d^adduct) 

Obs. Calculated 

179 11 3.1 

178 22 20.4 

177 100 100 

176 89.5 57.8 

175 33 21.8 

174 11 

700°C 

(MegSiO) 3 (MegSiO) 4 

Obs. Calculated Obs. calculated 

215 17 288 10 

214 24.8 287 27.4 2.7 

213 33.3 286 49.5 15 

212 41.5 2.8 285 59.5 51 

211 62 12.8 284 89.2 100 

210 83 49.2 283 100 96.5 

209 100 100 282 94.6 44 

208 100 75 281 75.6 8.9 

207 100 21.5 
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The results of the deuterated trimethylsilylenolate 

(M^172) are not completely unambiguous. There is a peak 

observed at m/e 174 which should not be present and peaks 

at both m/e 175 and m/e 176 are larger than calculated. 

The observed values for the cyclotrisiloxane are quite 

different than predicted. There are several peaks m/e 212, 

213, 214, and 215 which cannot be explained by either siloxe-

tane mechanism or the enolate mechanism. The high values at 

m/e 207, and 208, however, are consistent with some siloxe-

tane (49) intermediate. 

SiMe, 

> 1  Q  

(49) 

The observed results compare much more favorably with 

the calculated results in the case of cyclotetrasiloxane. 

A small value is observed for only one peak not calculated 

(m/e 288) . While the observed values for m/e 287 and 285 

are a little higher than the calculated values, they are 

generally agreeable. The big difference is noticed again 

with much larger peaks at m/e 281 and 282 than the calcu­

lated ones which imply the siloxetane intermediate (49). 

The results indicated that both mechanisms were occurring 

simultaneously. The extent to which each mechanism occurs 
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could have been calculated, had it not been for the unex­

plained peaks at higher masses. However, if these higher 

masses were disregarded, there was a 78/100 ratio of siloxe-

tane to enol intermediate, which is a substantial amount. 

This begged the question of why only one type of 

mechanism with aldehydes was so much different than with 

enolizable ketones. Aldehydes are quite enolizable (76) 

and it would seem a priori that a considerable amount of 

the enolate form would be produced. 

Reexamination of Roark's and Sommer's (65) heptanal 

experiments seemed essential. Heptanal and the cyclobutane 

generator (1^) in a 2:1 ratio by weight, respectively, were 

dropped in the heated vertical column (700°C) with a nitro­

gen flow. Only about 1/3 of the material was recovered in 

a liquid nitrogen trap. The results included many compo­

nents besides decomposition products of the starting ma­

terials . Four components were collected and were found to have 

m/e 207 (4.1%), 221 (5.1%), 112 (9.8%), and 281 (5.6%) with 

trace amounts of species with m/e 279, 186, and 355. 

The nmr of m/e 221 component indicated essentially all 

silyl methyl groups, thus a polymeric siloxane was implied. 

The mass spectrum had peaks at m/e 221, 147, 132, 73, all 

of which are indicative of the linear octamethyltrisiloxane. 

The ir substantiates this with strong absorptions at 2980, 

1260, 1050, 940, 870, and 700 cm"^. 
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The mass spectrum of the component with m/e 279 was 

similar to that of the component with m/e 221 with peaks at 

m/e 279, 221, 206, 147, 132, and 73. This indicated a linear 

siloxane with one more dimethylsilyl group. It was not iso­

lated and thus the mass spectrum of an impure sample was the 

only evidence available. 

It is known that pyrolysis experiments are often not 

reproducible with regard to final yields. Some products 

may well be different depending on the apparatus. However, 

it is difficult to conceive of such vast differences between 

these results and Roark's and Sommer's isolation of the 

olefin and hexamethylcyclotrisiloxane. A similar run at 

600°C gave essentially identical results as at 700°C so 

those at 700°C were utilized. 

Deuterated species might again elucidate the mechanism. 

Indeed, if only the siloxetane is present as suggested (66) , 

no incorporation is expected. Pure enolate would have one 

deuterium and the calculation of the statistical loss of d 

to get to Si^Cg^ species is the same as for the enolizable 

ketone assuming 100% d^-aldehyde. This is shown in Table 5 

while Table 9 considers the fact of 51.5% dg, 31.3% d^^, 

18.2% dg aldehyde which gives different results than the 

ketone. Finally, Table 10 considers the loss of deuterium 

with the loss of methyl to form the only observed ion 

(P-15). 
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Table 9. Calculated relative intensity of (MegSiO)^ from TMS-enolate with 51.5% d^, 

34% d^/ and 14% d^ aldehyde 

Specie 

m/e 
Contribution Contribution Contribution 

Sic, 

61 
50 
59 
58 

1.1+ 0.7- 1.8 
2.4+ 1.6 = 4.0 

33.3 + 32,2 = 55.5 

2.2 - 0.7= 1.5 
4.8- 1.6= 3.2 
66.6 - 22.2 - 44.4 

1.5 
5.0 

49.4 
55.5 

2.7 
9.0 
88.5 
100 

812^4 

120 
119 
118 
117 
116 

0.8+ 1.1= 1.9 
1.6+ 2.1= 3.7 
11.0 + 14.8 = 25.8 

3.2- 1.1+ 1.1= 3.2 
6.4- 2.1+ 2.1= 6.4 
44.4 - 14.8 + 14.8 = 44.4 

2.2 - 1.1= 1.1 
5.5 - 2.1= 3.5 

44.4 - 14.8 = 29.2 

2.1 
7.5 
37.9 
43.1 
25.8 

4.4 
15.6 
73.8 
100 
53.6 
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Specie 

m/e 
Cont, Cont. Cont. Cont. Cont. 

179 
178 
177 
176 
175 
174 

1.2 
2.1 

10.9 

3.2 
5.6 
29.3 

4.3 
7.5 

39.5 

2.1 
3.7 

14.7 

2.1 
8 . 0  
30.4 
46.3 
36.9 
10.9 

4.5 
17.3 
65.5 

100 
68.9 
23.5 

SijCg 

238 
237 
236 
235 
234 
233 
232 

0 . 2 0  
0 . 6 2  
4.5 

2 . 0  
4.7 

16.3 

4.1 
9.3 
32.7 

4.4 
9.8 
32.9 

1.8 
3.9 

13.1 

1.8 
3.3 
27.0 
44.2 
37.6 
17.5 
4.5 

4.1 
18.8  
61.2 
100 
85.2 
39.6 
19.8 
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Table 10. Calculated relative intensity of (MegSiO)^ from TMS-enolate from 

51.5% dg, 30.4% d^, and 18.1% dg aldehyde minus one methyl group 

Specie d^ Loss Probability d^ Loss Probability d^ Loss Probability Rel. Int. 

m/e dg Contribution d^ Contribution dg Contribution 

SiCg 0 (1/2) 

61 1.0 - .75 = .75 .75 .9 
60 1.8+ 0.8 = 2.6 3.2 - 1.6 = 1.6 4.2 5.4 
59 4.0 + 1.6 = 5.6 44.4 - 22.2 = 22.2 27.8 35.8 
58 55.5 + 22.2 = 77.7 77.7 100 

SigC* 0 (1/4) (2/4) 

120 2.1 - 1.1 = 1.0 1.0 1.4 
119 3.3 - .8+ 1.0= 3.4 4.3 - 2.1 = 2.1 5.5 10.3 
118 1.9+ 0.8 = 2.7 6.4 - 1.6+ 2.1= 6.9 29.6 - 14.8 = 14.8 23.4 43.4 
117 3.7 + 11.6 = 5.3 44.4 -11.1+ 14.8= 48.1 53.4 100 
116 25.8+ 11.1 = 36.9 36.9 67.5 
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Specie d^ Prob. dj^ Prob. 6.2 Prob. d^ Prob. d^j Prob. Rel. Int. 

m/e 

sigCa 0 (1/6) (2/6) 
180 0.9 0.9 2.1 
179 1.0 2.0 5.7 13 
178 3.9 1.8 5.5 19.7 44.3 
177 5.6 5.8 9.8 39.5 90 
175 1.7 7.2 36.1 43.6 100 
175 3.0 38.2 24.3 35.6 
174 15.7 6.5 14.9 

'^4^8 0 (1/8) (2/8) (3/8) (4/8) 

238 0.9 
237 3.7 2.0 1.0 2.2 
236 4.7 8.1 5.5 5.7 12.6 
235 2.8 10.7 27.1 12.2 49.5 
234 0.4 6.4 36.8 45.0 100 
233 1.8 2.5 41.2 91.7 
232 6.5 15.7 34.9 
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The products of the reaction of heptanal and the 

cyclobutane generator (15) were collected and the mass 

spectra were taken of the deuterated and nondeuterated 

analogue. The results are summarized in Table 11 for only 

the cyclic siloxanes produced. 

The very high percent of dg-species in both the tri-

and tetrasiloxanes are overwhelmingly in favor of the 

siloxetane intermediate. The small amount (~20%) of 

deuterated species is difficult to explain. It might be 

produced from the enol form or it might involve some ran­

dom exchange. An experiment was run to check the latter. 

Undeuterated octamethylcyclotetrasiloxane and deuterated 

aldehyde were reacted under the same conditions (700°C) 

as the original reaction, and the results of the collected 

products are found in Table 12. 

The products of the reaction were (Me^SiO)^ and 

(MeSiO)g and starting material (MegSiO)^. Only (MegSiO)^ 

and (MegSiO)^ were collected and analyzed. The results 

for (MegSiO)^ indicate some random deuterium exchange even 

without reaction. The major place where deuterium is in­

corporated is in the (MegSiO)^. Evidently, there is some 

increased affinity for deuterium in the process of losing 

Me^SiO. The value of 84% dg observed in the case of the 

same species formed in the copyrolysis of heptanal and 

silacyclobutane (IJ^) compared very closely to the 80% dg 
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Table 11. d-Incorporation results of (MegSiO)^ and 

(MegSiO)^ from copyrolysis of (MegSiO)^ and 

deuterated heptanal at 700°C 

M/e Ref. Sample 

(MegSiO)^ 

209 15 20 5 4 
208 20 35 15 
207 100 100 

84% dQ 12.6% ̂ 1 3.4% d. 

(MegSiO)^ 

283 20 22 2 2 
282 32 38 6 
281 100 100 

92.9% dQ. 5.5% dl 2.1%d2 

observed when (MegSiO)^ is heated in the presence of the 

same deuterated heptanal. Thus, all but a few percent of 

deuterated species is explained in the reaction and some 

if not all of this can be due to error in reading peak 

heights. It seems quite probable that the formation of the 

cyclotetrasiloxane would involve similar random deuteration 

exchange as observed in the formation of cyclotrisiloxane, 

although it is difficult to test. These results show 

clearly that essentially all of the cyclotrisiloxane comes 

from the siloxetane intermediate (52) and it is almost 
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Table 12. Results from copyrolysis of (MegSiO)^ and 
deuterated heptanal 

M/e Ref. Sample Calc'd 

(MegSiO) 3 

212 2.2 
211 12.6 
210 4 4-- .4 - 3.6 49.5 
209 11 20 9 - 1.8 = 7.2 100 
208 20 43 2 0 - 2 0  91.7 
207 100 100 34.9 

78. 5% dg 15.7% d^ 5.7% dg 

(Me^SiO) 
4 

287 2.1 
286 13 
285 3 3 - .12 2.8 - 0.5 2.3 44.3 
284 4 10 6 - 1.2 4.8 - 1.72 3.1 90 
283 20 28 8 - 2.9 7.1 - 7.1 100 
282 36 50 14 - 14 55.6 
281 100 100 14.9 

81% dg 11.3% 5.75% dg 2.5% dg 

certain that the same is true for the newly formed cyclo-

tecrasiloxane. The d-incorporation in (MeigSiO)^ might have 

come from the other cycLicsiloxanes known (62) to be in 

equilibrium. 

These results agree with Roark's and Sommer's (66) 

mechanistic interpretation only to the extent that tri-

siloxane comes from siloxetane. An important difference 
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+ MegSi 

0 O — Si — Me 
I 
Me 

(52) 

is that there are two products which substantiate this 

mechanism instead of the reported one. A more dramatic 

difference of this copyrolysis experiment with the re­

ported results is the formation in large quantities of 

siloxane with m/e 221 plus trace. amounts of siloxane with 

279. The results of their deuterium content is listed in 

Table 13. 

Substantial deuterium incorporation is observed in 

both of these components. The trimethylsilyl groups would 

most certainly be the location of the deuterium atoms and 

it is difficult to understand why more deuterium is not 

found. One possible explanation is that some other source 

supplies hydrogen to the silicon methylene besides the 

hydroxyl group of the aldehydic enol form. That a tri-

methylsilylenolate was not formed was seen by the thermal 

stability (at 700°C) of the independently prepared com­

pounds. Also the absence of any pealc in the vpc with 
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Table 13. Deuterium incorporation results of component 
(M/e 221) and component (M/e 279) from the 
copyrolysis of (1^) and heptanal at 700^0 

M/e Ref. Sample 

225 8 8 
224 25 25 - 12.7 
223 16 54 42.7 - 23.7 
222 30 100 79 - 79 
221 100 71 

8 - 3.0 5.00 - 2.0 
12.3 - 5.7 6.6 - 6.6 
19 - 19 6.6 - 6.6 

3.0 

40% d. 44.3% d. 10.7% d. 3.7% d^ 0.7% d, 

284 10. 5 10.5 - 5.7 4-8 - 4.2 
283 8 21 13 - 11.6 2.4 - 4.5 
282 16 36. 8 20.8 - 17.6 3.2 - 5.3 
281 24 63 39 - 20.2 19 
280 28 100 72 
279 100 100 

52.4% dQ 37.6% d^ 10% d^ 

similar retention time corroborated this. 

The results of the reactions of deuterated ketone and 

aldehyde have some similarities as well as some notable 

differences. Both ketones and aldehydes, whether enoliz-

able or not, form a substantial amount of what one must 

consider to be a four-center species with silicon, oxygen, 

and two carbon atoms- the siloxetane. Very little at the 

present time can be said about the properties of this 
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species except that it was unstable at 425°C and degrades 

to cyclic siloxanes. The intermediate in this second re­

action is dimethyloxosilane, a species of significant 

interest in itself. Properties of dimethyloxosilane, as with 

siloxetane, could not be observed under the reaction con­

ditions, but the chance that they might someday be examined 

seemed greatly improved with these results, fhe fact of 

whether an enolizable aldehyde or ketone is used is im­

portant only at certain (600°C) temperatures. Above that 

temperature, the deuteration experiments show that the 

siloxetane is a main intermediate by showing much less than 

calculated amounts of total deuterium. The fact that the 

independently prepared trimethylsilylenolate from the 

ketone, thermally (700°c), forms the same products as in 

copyrolysis is some cause for concern and a deuterated 

trimethylsilylenolate would be of significant value. 

The differences between aldehydes and ketones are 

seen at 600^C. The enolate is formed in the case of enoliz­

able ketones where only traces are observed with aldehydes. 

However, the two other components including a large amount 

with m/e 221 and a trace amount with m/e 279 are linear com­

pounds which cannot come solely by reaction with the hy-

droxyl proton of the enol form. Although calculations were 

not made for these compounds, it is quite clear that two 

trimethylsilyl groups would each have one deuterium and 
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peaks at m/e 221, 222, 279, and 280 would be almost 

negligible compared to those of higher masses. 

It becomes necessary with the deuterated aldehyde ex­

periments to invoke a third mechanism—one which has a 

source of protons which are not alpha to the carbonyl 

group. Water is one obvious source and some concern might 

be made as to the dryness of the starting materials. That 

this was not the case, was seen both in the formation of 

the dimer 144 and in the absence of the hexamethyl-

disiloxane. Both of these have been indicators of water 

in the past. This gives one very little basis to even 

suspect that water might be formed in the copyrolysis. As 

to exactly what was the extra source of protons was not 

determined. 

The advent of a silicon-carbon double bond suggests 

other species which would be most appealing. Silabenzene 

(53) would, seemingly, be more stable than 1,1-dimethyl-

methylenesilane (3J-). Even if it were not aromatic, as 

Silabenzene 

Si 

Me 

(^) 
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such, a small amount of conjugation could, quite conceiv­

ably, make the double bond less reactive to itself and 

other addends. Silabenzene is precedented by reports of 

thiobenzene (77) and the heterobenzenes of the VA family 

(78, 79, 80). The synthesis of silabenzene has been at­

tempted in at least one case (17), but results were nega­

tive. 

The thermal degradation is so successful at this mo­

ment in time, compared to other methods which have only 

implied its intermediate existence, that a similar approach 

might be tried in silabenzenes. Two readily available com­

pounds which have some necessary substitution are 1-chloro-

l-methyl-l-silacyclohexa-2,4-diene (^) and 1-chloro-l-

methyl-l-silacyclohexa-2,5-diene (^4). That either of 

these might be generated into a silabenzene is seen quite 

emphatically in the mass spectral results shown in Table 

14. . 

It is quite significant that the behavior of both 

chlorosilanes (^) and (M) is quite unique in their 

metastable losses of 36 (HCl) from the molecular ion. There 

are a number of cases reported where halogens migrate back 

to silicon in both the mass spectrometer (33) and in syn­

thetic work (81). These halogens migrate to and remain on 

silicon due to the very strong bond formed (82). The 

fragmentation of CI from silicon is rare, but the metastable 
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Table 14, Mass spectra (70 eV) of (^3) and (34) 

Me (33) (34) Me (33) (M) 

146 21 18 108 67 48 

144 55 47 105 7 6 

131 37 37 103 14 13 

129 100 100 93 15 12 

118 8 5 81 21 17 

117 6 6 79 46 33 

116 8 6 78 10 7 

115 7 12 67 12 15 

113 4 12 66 31 38 

110 4 4 65 32 33 

109 11 18 63 76 78 

Metastables 81.0 (144^+108) 

(33) + (34) 115.6 (144+129) 

loss of HCl (36) is reported in one other similar case in 

the mass spectral studied (83, 84) of dihydrosilaanthracenes, 

where its loss forms the aromatic-like 9-silaanthracene. 

H H 

-36 
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The metastable loss of HCl (36) from both the 2,4- and the 

2,5-isomers is substantial evidence for a quite stable 

species consistent with 1-methyl-l-silabenzene (^). The 

presence of chlorine seemed essential as no like process 

was observed with the corresponding dimethyl analogue (26) 

which only loses Me (15). Dimmel and workers (33) have 

H H 

Si 

H 

H 

HCl 

\ 
Cl Me 

(33) 

Si 

Me 

(53) 

sr 
Cl' \e 

(34) 

reported that ionization occurs on chlorine rather than 

silicon before a speci&s is able to eliminate with a hydro­

gen . 

The method to produce the same aromatic species (53) 

synthetically is not certain. However, the procedure most 

likely to work, based on precedent, is a thermal degrada­

tion of a species like (^). The formation of the other 

aromatic species would deter the reversible reaction so 

that silabenzene (53^ could be observed. 

The bicyclic generator (54) might be produced from the 

dianion and 2-bromo-l-chloro-l-methyl-l-silacyclohexa-2, 
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G./ 
Me cl 

(55) 

4-diene (^). The latter compound (^) would most likely 

be prepared from NBS bromination (85) of the diene ( 3 3 i ) .  

However, this turned out to be more difficult than first 

surmised. Refluxing a CCl^ solution of NBS and diene (33) 

for four to five hours resulted in much polymeric material. 

Some compound was isolated under reduced pressure by dis­

tillation. The mass spectrum of the product has M^258 

(2 Cl, 1 Br) and the nmr is quire complicated, indicating 

that the desired compound is not formed to any extent. 

The product one might expect from reactive silabenzene 

(53) is the (2+2) adduct (56), as in the case of the more 

simple analogue (7). In spite of its conjugation, there 

will probably be some polarity still present and dimeriza-

tion is quite possible. This adduct might well be produced 

Me 

•a.-5- -Sr-
Me^ (^) 

Me-
Q 

(54) 
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independently from reacting the brominated diene (55) 

with magnesium in THF (74) . A second approach might be 

to couple the silicons and allylic carbons separately. 

M 

Si 

7  1  I V  
Me CI CI Me Me Me 

Reversibility might allow the production of silabenzene 

(53) by thermal degradation in either case. 

Bromine at the 4-position in the 2,5-diene (^) might 

also be utilized to produce a silabenzene generator, al­

though it probably will be much less favorable. The forma­

tion of the generator (^7) probably would require stereo­

chemistry that would make this much less appealing. 

(57) 
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EXPERIMENTAL 

Instrumentation 

Proton nmr spectra were recorded on a Perkin-Elmer 

Model R-20B High Resolution nmr Spectrometer or on a Varian 

Model A-60 Analytical nmr Spectrometer. All chemical shifts 

are reported in ppm (6) downfield from a tetramethylsilane 

(TMS) standard. 

Infrared (ir) spectra were recorded on a BecTanan IR 12 

Infrared Spectrophotometer and all bands are reported in 

reciprocal centimeters (cm~^). 

Routine mass spectra were recorded on an Atlas CH-4 

ftiass spectrometer and exact mass measurements were carried 

out using an MS 902 mass spectrometer manufactured by AÉI. 

Routine analytical and preparative gas chromatography 

(prep gc) was carried out on an F + M Gas Chromatograph 

Model using 8' x 1/4" aluminum columns packed with 20% 

SE-30, DC-550 and Apiezon L on Chromosorb P. Gas chrom-

atographic/mass spectral (gems) analyses were performed on 

a Perkin-Elmer 270 mass spectrometer using 6' x 3 mm 

glass columns packed with 3% OV-1, 3% OV-17 or 3% SE-30 

on Chromosorb W. 

All microanalyses were performed by Use Beetz 

Mikroanalytishches Laboratorium, Kronach, West Germany. 
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Procedure for Determining Yields by VPC 

VPC yields were determined by considering areas under 

the peaks and the respective thermal conductivities of each 

component. A known amount of standard (usually having no 

functionality and having different retention time than any 

component), was mixed with the weighed mixture of products. 

If there was a lot of product, a smaller portion could be 

utilized. After several (usually 5-7) injections, the areas 

under the peaks (A=1/2 bh) were totalled for each com­

ponent. A known amount of each component was then mixed 

and injected several times. The area/m mole was calculated 

for each component, and thermal conductivity factors were 

derived from this. The observed areas from the product 

mixture were readjusted to areas that would exist, if equal 

thermal conductivities prevailed. These adjusted areas 

were directly related to moles and knowing the number of 

moles used in the standard, a simple calculation obtained 

the number of moles of each component in the mixture of 

products. If a portion was taken from a larger amount, a 

further calculation was needed to determine total moles. 
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Illustrative Procedure for Pyrolysis in Vacuum 

All pyrolyses in vacuum were carried out with a 28 ram 

diam x 30 cm Vycor tube with the vacuum gauge on the pump 

side of the nitrogen cooled trap. Both McLeod and thermal 

conductivity vacuum gauges were used. The samples were put 

into bulbs sealed by Fisher and Porter valves. The carrier 

gas, when a liquid such as cyclohexane was used, was also 

put into a bulb and sealed until needed. The sample was 

always degassed and some solvent was allowed through the 

collecting trap to the second trap before actually start­

ing the pyrolysis. When gases such as butadiene were used, 

one bulb was replaced wiLh a Brooks gas regulator, to con­

trol the flow. Samples were collected in a large trap and 

transferred to a vial before being weighed. An analysis was 

often made on the PE-270 mass spectrometer of the resulting 

products. Small amounts (20-30 p,l) of the bicyclic gen­

erator (28) were used. The presence of m/e 147 (hexa-

methyldisiloxane) was invariably indicative of moisture or 

oxygen which had somehow invaded the reaction chamber. 

• The presence of dimer in the copyrolyses indicated insuf­

ficient material was present. Preliminary studies are sum­

marized in Table 3 on page 44. 
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Illustrative Procedures for Flow Pyrolyses 

Vertical tubes (either the 28 mm x 30 cm or a smaller 

,10 mm X 30 cm) were packed with quartz chips and prepuri-

fied nitrogen was passed through the tube. A nitrogen 

cooled trap was also used, but care had to be taken so that 

the outlet tube would not freeze up. Pure samples as well 

as solutions (mixed or injected simultaneously) were dropped 

into the tube. 

Synthetic Procedures and Results 

1,l-Dimethyl-l-silacyclohex-2-ene 

l-l-Dichloro-l-silacyclohex-2-ene (^) (69) (16.6 g) 

was added to three-fold excess MeMgl in dry ether and re-

fluxed overnight. Usual work up with dilute HCl, NaHCO^, 

the etheral solution,was dried (MgSO^) and distilled 8.8 g 

(70% yield); bp 40°c/35 mm; nmr (001^)6, 0.0 (S, 6H), 0.62 

(m, 2H), 1.85 (m, 4H), 5.52 (d of t, J- 15 Hz, 2Hz, IH), 

6.56 ppm (d of t, IH, J= 15Hz, 4Hz) ; mass spectrum (70 eV) 

m/e (rel intensity) 126 (40), 111 (100), 94 (60), 59 (50). 

4-Bromo-l, l-dimethyl-l-silacyclohex-2-ene 

Equivalent aiTiounts of 1, l-dimethyl-l-silacyclohex-2-

ene and n-bromosuccinimide in CCl^ solvent were refluxed 

with a uv lamp for six hours (85). The succinimide (mp 

126°C) was recovered in 92.3% yield and the solvent was 
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distilled. 7v 50% yield of broinosilacyclotiex-2-ene: bp 

70-72°C (7 mm); nmr {CCl^)b 0.09 (s, 3H), 0.14 (s, 3H), 

2.23 (quint, 2H, J-4.5 Hz), 4.26 (q, 1H,J=4.5 Hz), 

5.74 (d, IH, J = 14 Hz), 6.76 ppm (d of d, IH, J = 14Hz, 

4.5 Hz); mass spectrum (70 eV) m/e (rel intensity), 204 

(1), 124 (35), 109 (100), 81 (30), 59 (45). 

1,l-Dimethyl-l-silacyclohexa-2,4-diene (26) 

Method An equivalent amount of 4-bromo-l, 1-

dimethyl-l-3ilacyclohexa-2-ene was added to DBU (1,5-

diazabicyclo [5.4.0] undec~5-ene) at room temperature. An 

exothermic reaction was followed by solidification. Work 

up with 5% HCl extraction with ether and finally distilla­

tion gave 42% yield of 1,l-dimethyl-l-silacyclohexa-2,4-

diene; bp 70°C (74 mm) ; nmr (CCl^) 0.1 (s, 6H), 1.72 (d, 

2H, J - BHz), 6.95 (m, 3H), 7.92 ppm (m,lH); mass spectrum 

70 eV) m/e (rel intensity) 124 (30), 109 (100), 81 (29), 

59 (30); uv (max acetonitrile) 265.5 mjj, (e 35 x 10^); Anal, 

calcd for 124.0708. Found: 124.0709. 

Method II 1, 2-Diiuethoxy-l, 1, 2, 2-tetramethyl-l, 

2-disilane was mixed with three equivalents of cyclo-

pentadiene and dropped into 12" x 3/4" Vycor tube with 

quartz chips at 600°-620^C. The product was collected in 

a liquid nitrogen cooled flask and was fractionally dis­

tilled immediately. The product was a mixture of the 2,5-

and 2,4-silacyclohexadienes in a total of 38% yield: bp 
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70°C (74 mm). 1,l-DimethYl-l-silacyclohexa-2,5-diene: 

10.5% mixture by nmr (CCl^)6 0.1 (s, 6H), 2.76 (m, 2H), 

6.95 (m, 3H) , 7.92 ppm (m, IH). The rest of the mixture 

89.4% was the conjugated 2,4-diene (26). 

2/3-Bis(trifluoromethyl-7,7-dimethyl-7-silabicyclo (2.2.2) 

octa-2,5-diene (28) 

1, l-Dimethyl-l-silacyclohexa-2,4-diene {2^) was put 

into a tube to which an excess of perfluoro-2-butyne 

(Pierce Chemical Co.) was added. The tube was sealed under 

vacuum and put into oil bath at 60°c for four hours. After 

the seal was broken and the excess perfluoro-2-butyne was 

allowed to escape, a yellow viscous liquid resulted shown 

to be quite pure by vpc was colorless when distilled: bp 

78-80°C (14 mm), nmr (CC1^)6 0.11 (s, 5H), 0.48 (d, 2H, 

J-3.8 Hz), 3.58 (d, IH, 6.5 Hz), 4.12 (m, IH), 6.15 ppm 

(m, 2H): ir (neat) 3065 (w), 2980 (w), 1660 (w), 1610 (w) 

1415 (w), 1375 (w), 1345 (w), 1300 (vs), 1257 (vs), 1200 

(vs), 1150 (vs), 1090 (w), 1050 (w) , 1015 (s), 980 (vs); 

mass spectrum (see Table 2, page 34) uv (max cyclohexane) 

295 mp, (e 4 x 10^) Anal. Calcd for 2^^311 C, 46.14; 

H, 4.40; Si, 9.67, 285.06134. Found: C, 45.14; H, 4.22; 

Si, 9.78, 286.06492. 
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1, 2-DiTnefhoxy-l, 1,2/ 2-tetramethyl-1, 2-disilane 

l,2-Dichloro-l,l,2,2-tetramethyl-l,2-disilane pre­

pared (86) from hexamethyldisilane (87) was added dropx^fise 

to a slurry of two equivalents of sodium methoxide and dry 

ether at 0°C. After refluxing for two hours, the mixture 

was filtered and distilled to give 78% yield of 1,2-

dimethoxy-1,1,2,2-tetramethyl-l, 2-disilane (73) : bp 82-87°C 

(90 mm); nmr (CC1^)6 0.2 (s, 2H), 3.36 ppm (s, IH), mass 

spectrum (70 eV) m/e (rel intensity) 178 (86), 148 (100), 

118 (18). 

1,1,2,2-Tetrachloro-l,2-dimethyl-l,2-disilane 

This compound could never be isolated in its pure form, 

but always had an impurity of 1,1,2-trichloro~l,2,2-tri-

methyl-1,2-disilane. One mole hexamethyldisilane was added 

to 4 moles of AlCl^ (anhyd.) and 4 moles of acetyl chloride 

were added dropwise until about 2 moles were used. Then 

the temperature was increased to 100°C, the remainder of 

the acetyl chloride was added and heated five and one half 

hours more at 110°C. Distillation gave a mixture (bp 

65°C/24 mm) of which 78.1% is desired compound making 

62.4% overall yield, nmr (CC1^)6 1.0 ppm (6) (88). 
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l-Chloro-l-met.hyl-l-silacyclohexa-2/ 4-diene (^) 

A mixture of 79 mol % MegSigCl^ and 21 mol % Me^SiCl^ 

was added separately with a three-fold excess of cyclo-

pentadiene to a column 3/4" x 12" at 590-530^C with a nitro­

gen flow of 250 ml/min. The product mixture was frac­

tionally distilled and a fraction bp: 68-73°C (31 mm) was 

collected; nmr indicated 1-chloro-l-methyl-l-silacyclohexa-

2/4-diene (82.5 mol %) l-chloro-l-methyl-l-silacyclohexa-2/ 

5-diene (13.2 mol %) and 1,1,2,2-tetrachloro-l,2-dimethyl-

disilane (4.4 mol %). Proof of structures came with 

separation of isomers and verifying by nmr (CC1^)6 0.52 

(s, 3H); 1.83 (d, 2H, J= 4Hz), 5.90 (m, 2H), 6,73 ppm 

(d of q, J - 2E:z) 7 mass spectrum (see page 80 ) ; uv max 

3 
(cyclohexane) 258 m^ (e 4.88 x 10 ). Anal. Calcd for 

CgHgSiCl: C, 49.81; H, 6.26; Cl, 24.50; Si 19.41. Found: 

C, 49.98; H, 6.37; Cl, 24.37. 

l-Chloro-l-methyl-l-silacyclohexa-2,5-diene (34) 

The best yields were obtained by reducing the tempera­

ture of the glass tube to 525°C and keeping everything else 

the same as above. A mixture, bp ô8-73°C (31 mm), gave 40 

mol % tetrachlorodimethyldisilane, 21 mol % trichloro-

trimethyldisilane; 34% total cyclic diene including 25.7 mol 

% 2,4-diene (21) and 13.3 mol % 2,5-diene (M): nmr (CC1^)6 

0.50 (s, 3H) 3.00 (m, 2H) , 5.90 (d of t, 2H, J=15Hz, 2Hz) , 
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6.64 ppm (d of t, 2H/ J = 15Hz, 3.5 Hz); mass spectrum 

(see page 80). 

2/2-Dimethyl-2-silabicyclo (2.2.1) hept-5-ene (45) 

Method 1 2/3-Bis (trifluoromethyl)-2, 2-dime'c.hyl-

2-silabicyclo [2.2.2] octa-2,5-diene (^8) was mixed with 

cyclopentadiene. A vpc analysis (20% DC-550 Silicon Fluid 

on Chromosorb P) shows 97% hexafluoro-o-xylene and 55% 

yield of 2,2-dimethyl-2-silabicyclo (2.2.1) hept-5-ene: 

nmr (CC1^)& 0.00 (s, 3H), 0.2 (s, 3H), 1.35 (d, 2E, J = 

9.5 Hz), 1.68 ppm (quint., J =3Hz) ir (CCl^) 3030 (s), 

2985 (vs), 2825 (s), 1840 (m), 1410 (s), 1290 (vs), 1180 

(vs), 1060 (s) , 880 (s), mass spectrum (70 eV) m/e (rel 

intensity) 133 (50), 123 (75), 95 (35), 79 (51), 98 (42), 

77 (30), 73 (70), 72 (100), 59 (63), 43 (82). Anal, calcd 

for CgH^^Si: C, 69.62; H, 10.15, Si, 20.21. Found: C, 

69.40; H, 10.04. 

Method II (attempted) 1,1-Dimethyl-l-silacyclo-

butane was mixed with cyclopentadiene and copyrolyzed at 

600°C. A mixture of two isomers all having M"*" 138 were 

observed in gems, but were never isolated nor further 

elucidated. The mass spectrum (70 eV) m/e (rel intensity) 

of other isomer: 138 (86), 123 (100), 101 (50), 73 (32), 

59 (65). 
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Pyrolysis of generator (28) in a sealed tube at 320°C 

A small amount (30 jj,l) of the generator (28) was sealed 

under vacuum in a glass tube and heated in Wood's Metal bath 

at 320°C for two hours. Four components were observed on 

the F and M gas chromatograph (1/4" x 8' 20% DC-550 on 

chromasorb P), but only two of these were isolated and they 

had 214 and 306. The component at 306 was not eluci­

dated, but the other was found to be the hexafluoro-o-

xylene (^): mass specbrum (70 eV) m/e (rel intensity) 214 

(100), 195 (65), 164 (28), 145 (90). 

Reaction of naphthalene dianion and chloromethy1chloro-

dimethylsilane 

The same procedure using the identical amounts of re­

agents substituting only the chloromethylchlorodimethyl-

silane for the tetramethyldichlorodisilane was used as re­

ported (67). The product was analyzed on the gems and 

peaks with silicon had 144, 200, 272, and 342. The de­

sired peak at 200 was the largest, but other peaks with 

increasing numbers of Me2Si = CHg (M^72) were present: mass 

spectrum (70 eV) m/e (rel intensity) 200 (20), 185 (70), 

128 (100), 73 (80). The component with 272 had mass 

spectrum (70 eV) m/e (rel intensity) 272 (100), 200 (80), 

73 (60). 



www.manaraa.com

94 

Flow pyrolysis of neat generator (28) in a vacuum at 420°C 

Into a glass bulb with a vacuum valve was placed 0.2564 

g (0.0011 mole) of generator (^). When the pressure was 

< 0.001 mm and the temperature 420°C, the generator was al­

lowed to vaporize into the oven. The pyrosylate, collected 

in a liquid nitrogen cooled trap was transferred to a vial 

and it weighed 0.1169 g. Four components were observed in 

vpc, but only two were isolable. A large amount (0.0838 g) 

of xylene (4_0) (71.6%) and 0.015 g of clear viîicous material 

having 292, with other peaks at m/e 220, 204, 148, 146, 

and 73 were observed. The hrms had obs. 292.148188 and 

calcd 292.1491887 for C^gH-gSig. The nmr (HA-100) (CHCl^ = 

0.00) - 736.8 (s, 16H), - 727.7 (s), - 717.6 Hz (s, to­

gether 139H). 

Pyrolysis of neat generator in a vacuum system at 500°C 

The procedure was the same as above except more (0.400 

g) of the generator was used. The gems indicated 19 dif­

ferent components, but the main ones had of 124, 144, 

306, and 214. The retention times, mass spectra, and nmr 

were identical to the i^T 144 peak with 1,1,3,3-tetramethyl-

1,3-disilacyclobutane which was prepared independently (74). 

The xylene: nmr (CC1^)6 7.8 ppm (t of d, J= 6Hz, 4H); ir 

(neat) mass spectrum (70 eV) m/e (rel intensity) 214 (100), 

195 (65), 164 (28), 145 (90). ir (CCl^) 3080 (m), 2970 
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(s), 1960 (w), 1950 (w) , 1780 (w), 1560 (w) , 1615 (s), 

1460 (s), 1320 (vs), 1180 (vs), 1045 (vs), 960 (s), 940 

(s). Anal, calcd for CgH^F : C, 44.85; H, 1.93; 214.02177. 

Found: C, 44.97, H, 1.93, 214.02181. 

Tetramethyldisilacyclobutane (7) : ninr (CCl^) - 0.3 

(s, 2H), 0.23 (s, 6H); mass spectrum (70 eV) m/e (rel 

intensity) 144 (27), 129 (100), 100 (15), 73 (13). Anal, 

calcd for 2^12- 144.07889. Found: 144.07955 (74). 

Pyrolysis of generator {28) with cyclohexane at 500°C 

Generator (0.112 g) was added to one bulb, cyclohexane 

to anocher, and both were degassed. The cyclohexane was 

started and the generator was allowed to vaporize with the 

cyclohexane. Some heat from a heat gun was required to 

vaporize the generator. The pyrosylate (2.8114 g) was 

separated in the vpc and 0.086 g xylene (46.2%), 0.028 g 

(22%) of cyclic dimer. Also 0.010 g of material was col­

lected which appeared to be a silicon-containing polymer 

and was not further elucidated. 

Photolysis of generator (^8) in CCl^ 

A small amount of generator (28) (0.0307 g) mixed with 

CCl^ (0.5695 g) and degassed with Argon was added to a 

quarts nmr tube. A Rayonette was used with light of 2537 

The reaction was followed by nmr and the olefinic 
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protons at 6 ppm moved down field to 7.6 ppm in a multi­

plet. The bridgehead protons both disappeared and a 

doublet appeared at 2.76 ppm &. The doublet of the silyl 

methylene collapsed to a singlet in same region of 0.53 

ppm Ô, and the methyl at 0.1 ppm shifted down field to 0.23 

ppm and 0.37 ppm. The gems indicated four components with 

m/e 113, 93, 63, and 214. The first three all had 

chlorine (113 had 2 Cl) and were consistent with MeSi^Clg, 

MegSi^Cl and Si^Cl respectively. The compounds were not 

further characterized. 

Photolysis of generator (28) in cyclohexane 

The same equipment and procedure as above was used. 

The generator 0.107 g and cyclohexane were added to an nmr 

tube and followed by nmr when photolyzed in the Rayonette. 

Essentially, all the olefinic protons had disappeared and 

new peaks at 7.7 ppm were present. The bridgehead protons 

were absent, but the silyl methyl protons were 0.12 ppm 

this time. The silyl methylene protons remained about the 

same and no doublet at 2.76 ppm was present. The results 

of the gems showed xylene (M^214) plus other silicon-

containing products whose structures were not obvious from 

their mass spectra. 
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Photolysis of generator (^S) and 2-methylbut-2-ene 

Similar procedures were used as above using 2-methyl-

but-2-ene as solvent. After one hour in Rayonette with 

2537 light nearly all the olefinic protons of (28) had 

disappeared. The silyl methyl protons went into many peaks 

around 0.0-0.3 ppm and the product mixture was not investi­

gated further. 

Methanolysis of generator (^8) 

Generator (0.03 g) and methanol were added to an nmr 

tube and a mildly exothermic reaction occurred. The gems 

shows basically one component of 318 which is 285 + MeOH. 

The base peak of m/e 89 indicated Me2Si-O^Me. The product 

was separated on vpc (8', 1/4", DC-550 Silicone Fluid in 

Chromosorb P at 100°C): nmr (CCl^)6 0.1 (s, 6H), 1.0 

(t, 2H, J-5Hz), 2.9 (m, IH), 3.33 (s, IH), 5.9 (m, 2H), 

5.55 ppm (m, IH) ; mass spectrum (70 eV) m/e (rel intensity) 

588 (1), 360 (10), 265 (16), 209 (24), 191 (52), 155 (20), 151 

(100), 141 (28), 128 (11), 99 (14), 75 (5), 73 (13). 

Copyrolysis of cyclobutane generator (_15) and 4-methyl-2-

pentanone at 600°C 

Generator (3^) and ketone were mixed and dropped into 

a heated tube (ôOO^C). The pyrosylate showed essentially 

one component having identical mass spectra, nmr, and re­

tention time as an authentic sample of trimethylsilylenolate 
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ether. The yield determined by vpc was 30%. 

Copyrolysis of cyclobutane generator (15) an^ 4-methyl-2-

pentanone at 700°C 

Generator (1^) and ketone were mixed in a ratio of 1:3 

respectively and dropped into tube heated at 700°C with 

nitrogen flow of 250 cc/mm. The pyrosylate showed several 

peaks, some of which could not be isolated but gems indi­

cated were gases. Four isolated components, benzene, 

octamethylcyclotetrasiloxane, toluene, and hexamethyl-

cyclotrisiloxane were identified by identical retention 

times, mass spectra of authentic samples. Only trace 

amounts of material having the same retention time as the 

olefin was observed. Yields for each were 27% benzene, 

31.8% cyclictrisiloxane, 5 2.5% cyclictetrasiloxane, and 

20.6% toluene. Anal, calcd for C^H-: 78.04592. Found: o o 

78.04554. Anal, calcd for C^Hg: 92.06250. Found: 

92.06260. 

Trimethyls ily1-4-methy1-2-pentenolate 

Dry (CaHg) dimethylformamide (200ml) (75), dry (LAH) 

triethylamine (121 g), and chlorotrimethylsilane (55.2 g) 

were added to a flame dried 1000 ml three neck flask with 

a magnet stirrer. The mixture, kepc dry with nitrogen, was 

refluxed for 48 hours. Work up was with cold NaHCO^ solu­

tions, and one extraction with cold 5% HCl was followed by 
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a cold NaHCOg extraction, dried (MgSO^) and distilled (bp 

47-52°C/30 mm). The nmr indicated a mixture of starting 

ketone and enolate in 0.45 mol % and 0.55 mol % yields, 

respectively. The enolate was separated from ketone with 

vpc (8' 10% Apiezon L on Chromosorb P): nmr (CC1^)6 0.17 

(m, 9H), 0.92 (d, 6H, J =5.5 Hz), 1.72 (s, 3H) , 1.95 (m, 

IH) , 4.20 ppm (q, IH, J = lOHz) ; mass spectrum (70 eV) m/e 

(rel intensity) 172 (5), 157 (40), 130 (20), 117 (20), 117 

(55), 115 (44), 103 (8), 101 (4), 75 (70), 73 (100); ir 

(CCl^) 750 (s), 830 (s), 1000 (s), 1210 (s), 1250 (s), 

1550 (s), 2950 (w) . 

Pyrolysis of trimethylsilyl-4-methyl-2-pentenolate at 500°C 

Trimethylsilyl-4-methyl~2-pentylenolate (0.259 g) was 

dropped into a tube at 500°C. VPC analysis of material col­

lected (0.0589 g) indicated very little thermal degradation 

and mainly pure enolate ether. . . . 

Pyrolysis of 4-methyl-2-pentenolate at 700°C 

4-Methyl-2-pentenolate was dropped into the heated 

tube (700°c) and four products were collected, including 

benzene (40%), hexamethylcyclotrisiloxane (27.9%), toluene 

(19%), and octamethylcyclotetrosiloxane (41.7%), as de­

termined by vpc. These compounds had identical mass 

spectra and retention times as the authentic samples. 
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Copyrolysis of cyclobutane generator (15) and benzaldehyde 

^ 600°C 

Cyclobutane generator (^) (0.309 g) and benzaldehyde 

(0.7054 g) were copyrolyzed at 600°C. A gems analysis in­

dicated (MegSiOijy (MegSiO)^, Ph CH- CH^, and (MegSiOig. 

Further vpc analysis gave yields of 20.3%, 23.4%, 37.5% and 

5.3%, respectively. The products were analyzed by identical 

mass spectra and retention times as authentic samples. 

Copyrolysis of generator j^28) and benzaldehyde at 450°C 

Generator (0.60 g) and benzaldehyde (1.00 g) were mixed 

and pyrolyzed at 450°C. The products were (MegSiO)^ 

(21.1%), (MegSiO)^ (43.5%), xylene (64%), and Ph CH= CH2 

(29%). The styrene was identified by identical nmr with 

an authentic sample. The other components were identified 

by identical retention times and mass spectra of authentic 

samples. 

Pyrolysis of 2,4-dimethyl-l-pentene at 700°C 

A small amount of 2,4-dimethyl-l-pentene (89) was col­

lected with vpc after being produced by pyrolysis of 2,4-

dimethyl-l-pentylacetate at 600°C. The subsequent pyrolysis 

of the olefin at 700°C resulted in benzene, toluene, and 

xylene as identified by mass spectra and identical retention 

times with authentic samples. 
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Deuteration of 4-methyl-2-pentanone 

4-Methyl-2-pentanone (25 g) was added with D^O (4.0 

g) and a small amount of KgCO^. The DgO/kgCOg solution was 

replaced twice in three days and it was held at refluxing 

temperatures. The nmr indicated 86.7% of the original 

protons adjacent to the carbonyl had been replaced with 

deuterium. This was corroborated with results of reference 

ketone mass spectrum (18 eV) m/e 100 (100) and the deuterated 

species, 103 (5.5), 104 (13.5), 105 (20.5), and 106 (2.5) 

which calculates to be 52% dg, 34% d^, and 14% dg. 

Copyrolysis of cyclobutane generator (15) and deuterated 

4-methyl-2-pentanone at 600°C 

Deuterated ketone and generator were mixed in about 3:1 

ratio and pyrolyzed at 600°C. One component was found and 

separated with the vpc. The mass spectrum (15 eV) m/e (rel 

intensity) 174 (11), 175 (33), 176 (89.5), 177 (100), 178 

(22), 179 (11), (see Table 8 , page 64); the reference 

sample: 172 (100), 173 (14.7), 174 (3.8). 

Pyrolysis of cyclobutane generator (15) and deuterated 

4-methyl-2-pentanone at 700°C 

The generator and ketone were mixed in 1:3 ratio and 

pyrolyzed at 700°C. The four components were separated and 

mass spectra (16 eV) m/e (rel intensity) (MegSiO)^ m/e 207 
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(100), 208 (100), 209 (100), 210 (83), 211 (52), 212 (41.5), 

213 (33.3), 214 (24.8) and 215 (17.0); (MSgSiO)^ 280 (55), 

281 (75.6), 282 (94.6), 283 (100), 283 (89.2), 285 (59.5), 

286 (49.5), 287 (27.4), and 288 (10); C^H^, 78 (16.2) 79 

(100), 80 (89.2), 81 (71.4), and 82 (43.3); CLHg, 91 (15), 

92 (100.0), 93 (96), 94 (100), 95 (96), 96 (75.5), 97 (45), 

98 (25.4), and 99 (10.2). Reference spectrum (16 eV) m/e 

(rel intensity) (MegSiO)^ 207 (100), 208 (28), 209 (18); 

(MegSiO)^ 281 (100), 292 (29), 283 (19); C^Hg 78 (100), 

79 (8); C^Hg 91 (15), 92 (100), 93 (9). 

Deuteration of heptanal 

Heptanal (16.6 g), D^O (5 g) and KgCOg (0.5 g) were 

mixed and left to reflux for 24 hours. The D2O/K2CO2 solu­

tion was replaced twice and the resulting heptanal was 

washed, dried and distilled. The nmr indicated substantial 

decrease in protons adjacent to the carbonyl; mass spectra 

(70 eV) m/e (rel intensity) 95 (10), 96 (100), 97 (10), 

98 (4), 99 (2) for reference. The deuterated sample: 95 

(4), 96 (40), 97 (70), 98 (100), 99 (14), 100 (6), 101 (2). 

This calculated dg 18.2%, d^ 30.4%, d.2 51.5%. 
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Copyrolysis of (15) ^nd heptanal at 700°C 

Generator and heptanal were mixed in a 1:3 ratio and 

pyrolyzed at 700°C. Collection of the product mixture by 

vpc resulted in four components with m/e 207 (4.1%), 221 

(5.1%), 112 (9.8%), 281 (5.6%). Also trace amounts of com­

ponents with m/e 279, 186, 355 and higher molecular weight 

siloxanes were observed. The components with m/e 207 and 281 

were seen to be cyclic siloxanes by having identical mass 

spectra, retention times, and ir spectra as authentic sam­

ples. The component with m/e 112 had identical retention 

times, ir, and nmr as an authentic sample of 1-octene pur­

chased from Aldrich. Chemical Co. The component with m/e 221: 

nmr (CCI) 0.00 (s, IH), 0.24 (s, IH) , 0.24 ppm (s, 6H) ; ir 

(CCl^) 2960 (vs), 2900 (m), 1425 (w), 1340 (w), 1260 (s), 

1120 (w), 1050 (s), 940 (vs), 870 (vs), 700 (s); mass spectrum 

(70 eV) m/e (rel intensity) 221(100), 203 (3), 206 (6), 191 

(2), 189 (5), 147 (9), 132 (6), 130 (4), 104 (14), 96 (4), 

73 (80), 59 (8), 45 (7). Anal, calcd for C^Hg^OgSig: 

221.0849. Found: 221.0843. The component at m/e 279 could 

never be isolated but the mass spectrum indicated a siloxane 

with peaks at m/e 279, 221, 206, 147, 132, 73. Further 

elucidation was not made. 
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Copyrolysis of cyclobutane generator (3^5) and deuterated 

heptanal at 700°C 

Generator and heptanal were mixed in 1:3 ratio and 

pyrolyzed at 700°C. Collection was with the vpc and the 

mass spectra (18 eV) m/e (rel intensity 207 (100), 208 (40), 

209 (20), 210 (8); 281 (100), 282 (50), 283 (28), 284 (101), 

285 (3); 221 (75), 222 (100), 223 (585), 224 (37.5), 225 

(8.3); 219 (100), 280 (100), 281 (53), 282 (37), 283 (21), 

214 (10); reference spectra (18 eV) m/e (rel intensity) 

207 (100), 208 (20), 209 (11); 281 (100), 282 (36), 283 (20), 

284 (4); 221 (100), 222 (27), 223 (18); 279 (100), 280 (28), 

281 (24), 282 (15), 283 (8). 

Trimethy1s ilyIheptenolate 

Heptanal (57 g), dimethylformaamide (200 ml), tri-

ethylamine (121 g) and chlorotrimethylsilane (65.2 g) were 

added together to flame dried three neck 1000 ml flask with 

magnetic stirring bar and refluxed for 48 hours with nitro­

gen to keep it dry (75). Work up included cold NaHCO^ ex­

tractions, one quick cold 5% HCl extraction, followed by a 

NaHCOg extraction, then dried (Mg SO^) and distilled (bp 

68°C/11 mm). vpc indicated two isomers which were sep­

arated. 

cis-Isomec: nmr (CC1^)& 0.17 (s, 9H), 0.97 (m, 3H), 

1.27 (m,6H), 2.02 (d, 2H, J = 7Hz) , 4.4 (q, lH,J=7Hz), 5.04 
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ppm (d of t, IH/ J= 7H2, 1.3 Hz), mass spectrum (70 eV) 

m/e (rel intensity) 186, (3), 171 (5), 129 (23), 75 (11), 

73 (100). Anal, calcd for C^QH22''3iO: C, 65.14; H, 12.03; 

Si, 15.19; 0, 8.68. Found: C, 6525, H 12.02, Si, 14.95. 

trans-Isomer: nmr (CC1^)6 0.15 (s, 9H), 0.95 (m, 2H), 

1.3 (m, 6H) , 1.8 (m, 2H), 4.84 (m, IH) , 6.07 ppm (d of t, 

IH, J = 12Hz, 1.7 Hz), mass spectrum (70 eV) m/e (rel 

intensity) 186 (8), 171 (13), 129 (62), 75 (25), 73 (100). 

Anal, calcd for C^gHggSiO: C, 65.14; H, 12.03; Si, 15.19; 

0, 8.68. Found: C, 65.17; H, 12.04; Si, 14.87. 

Control pyrolyses 

The following substances were put through the heated 

tube at 700°C under the same conditions. The results were 

similar in that besides a few very volatile components, 

these components were isolated in quite pure form. 4-

Methyl-2-pentanone, heptanal, mixture of trimethylsilyl-

heptenolates , 1-octene. 

1,1-Di-n-butyl-l-silacyclobutane 

To a three-fold excess of n-butyl magnesium chloride 

was added 1,1-dichloro-l-silacyclobutane (90) and it was 

refluxed overnight. Usual work-up with dilute HCl, 

NaHCO^, NaCl, the etheral solution was dried (MgSO^) and 
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the ether evaporated. The resulting mixture was distilled 

and found to contain 82.5% di-n-butyl-l-silacyclobutane: 

bp 92°C (1.9 Iran); nmr (CCl^) 1.32 (t, 8H, J = 4.5 Hz), 1.86 

(m, 14H), 2.00 ppm (quint, 2H); ir (neat) 2960 (vs), 2920 

(vs), 2820 (vs), 1460 (m), 1120 (s), 1080 (w)? mass spectrum 

(70 eV) m/e (rel intensity) 184 (10), 156 (46), 143 (14), 

129 (82), 99 (100), 81 (30), 86 (92), 85 (40), 72 (40), 

71 (100), 70 (72). 

Dipheny1ethynyldimethylsilane 

Ethylbromide (24 g) was added to magnesium and when 

cooled, phenylacetylene was added to the Grignard (91), 

After 15 minutes, dimethyldichlorosilane (12.8 g) was added 

and left stirring for 24 hours. Work up by HgO, NaCl dried 

(MgSO^) and evaporation of ether. Recrystallization twice in 

Skelly A gave 1.40 gms white crystals mp 78-79°C (92). A 

second crystallization gave 2.85 gms: nmr (CC1^)& 0.48 (s, 6H) 

7.26 ppm (m, 12H); mass spectrum (70 eV) m/e (rel intensity) 

264 (7), 249 (16), 205 (13), 173 (68), 162 (10), 161 (10), 159 

(10), 145 (18), 144 (70), 143 (100), 135 (29), 131 (10). 

Reaction of diphenylethynyldimethysi1ane and hydrogen bromide 

Hydrogen bromide gas was bubbled into a solution of 1.0 

g silane and 150 ml CHCI3 (93). The crude product had nmr 

showing many different silyl methyls at 0.47, 0.32, 0.08, 
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0.15, 0.17 ppm. Separation on silica gel column with Skelly 

B resulted in a-bromostyrene determined from nmr and mass 

spectrum (M^182) and 3,0-dibromostyrene (M^260). Other 

components M^170 (w/Si-Me), M^174 ware observed, but not 

elucidated. 

Reaction of n-butyllithium with diphenylethynyldimethyl-

silane 

n-BuLi (0.024 mois) was added to 1 g silane in 50 ml 

dry ether (93). A clear colorless liquid resulted. Thick 

layer preparative chromatography (silica gel) with Skelly 

B as solvent resulted in one basic compound M 216. nmr 

(CC1.)& 0.3 (s, 6H), ca 1.2 (m, 9H), ca 7.82 ppm (m, 5H). 

This was consistent with n-BuSiMe^Ph. 

Hydrogénation of dipheny1acety1enyldimethy1silane with 

Pd/BaSO^ 

Hydrogénation of dyphenylacetylenylsilane was carried 

out three different times, altering conditions (quinoline-

2 drops/lO ml MeOH, 10 ml byridine-solvent, quinoline-4 

drops/10 ml MeOH). The amount of hydrogen used varied from 

excessive to equivalent amounts to less than equivalent 

amounts. In all cases, hydrogénation occurred seemingly 

without any selectivity. A mixture of diacetylenic silyl 

methyls (0.48 ppm 6), transolefin, acetylenic (0.39 ppm) 
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trans, trans (0.29), cis, acetylenic (0.24), cis, trans 

(0.15) cis, cis (0.01 ppin) were observed. 

Hydroboration of diphenylacetylenylsilane 

Diphenylacetylenylsilane (1 g) was added to NaBH^ and 

borontrifluoride etherate (94). The nmr indicated a mix­

ture of acetylenic and styryl silanes with a ratio 28.5% 

to 71.5% respectively at 0.48 and 0.24 ppm. The latter 

has one styryl and one phenyl acetylene. Maximiim conditions 

came with using R2BH at O^c in 10% excess for one half hour 

in diglyme when cis, cis (0.02 ppm 6) (10%) and cis-trans 

(0.10 ppm 5) (55%) were isolated from column chromotography 

(silica gel with Skelly B). 

Photolysis of di-cis-styryldimethylsilane 

A Hanovia lamp (450 watt) was put into a solution of 

0.430 g distyrylsilane and 450 ml dry ether (95). The 

distyrylsilane was 95% di-cis. After 30 minutes the simple 

olefin doublet in nmr split and much isomerization to 

trans was evidenced. After 70 minutes about half of the 

cis styryl groups had isomerized. At no time was there any 

evidence for cyclobutyl protons or an increase in phenyl 

protons due to formation of 1,4-dipheylbutadiene. 
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di-trans-Styryldimethylsilane 

Styryl magnesium bromide (96) was prepared and kept 

cool < 15°c. Dimethylchlorosilane was added slowly and 

left overnight. Workup with H^O, dry (MgSO^), and evapora­

tion (under reduced pressure) of ether gave mixture: 

styrene (35,7%), cis, cis (0.017 ppm 6) (40%), cis, 

acetylene (0.15 ppm b )  (8%), trans, trans (0.32 ppm 6) 

(25.5%), and trans acetylene (.39 ppm 6) (25.6%). The 

di-olefin could be concentrated by column chromatography 

(silica gel) with Skelly B. 

Photolysis in rayonette of di-trans-styryldimethylsi1ane 

A number of attempts were made to close the system by 

a 2 + 2 cycloaddition (95). ViThen d^-acetone was used with 

di-trans olefin at 2537 R in quartz, very little change 

occurs. At 3000 R in pyrex, the 0.39 peak decreases and 

one at 0.19 increases. More splitting in the olefinic 

region is observed. With benzophenone in CCl^, the 

acetylenic peaks at 0.15 and 0.39 grew at the expense of 

the olefinic protons Which disappeared until only 

diacetylene was observed. 

Dimethylsilacyclobutane (1.5) 

To a three-fold excess of MeMgl was added 1,l-dichloro-

1-silacyclobutane (90) and left to reflux overnight. Work 

up included dilute HCl, NaHCO^, dried (MgSO^) and distilled: 
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bp 82°C (750 mm); nmr (CCl^) 0.3 (s, 5H) 1.0 (t, 4H, 

J =8Hz), 2.1 ppm (quint, 2H, J= 8Hz); ir (neat) 3950 (vs), 

2930 (vs), 1420 (w), 1390 (m), 1245 (vs), 920 (s), 905 

(s), 880 (s), 840 (s), 800 (s), 730 (s), 700 (s), 640 (s); 

mass spectrum (see Table 1 , page 13). 

Pyrolysis of octamethy1cyc1otetrasi1oxane 

Pyrolysis (52) of the octamethylcyclosiloxane at 750°C 

gave three products which were separated on the vpc (8' x 

1/4" DC-550 Silicone Fluid on Chromasorb P) to give hexa-

methylcyclotrisiloxane: mp 54°C; mass spectrum (70 eV) 

m/e (rel intensity) 207 (50), 149 (100), 132 (22), 131 (10), 

117 (25), 115 (15), 115 (30), 105 (16), 104 (15), 103 (9), 73 (25). 

Octamethyl cyclotetrasiloxane 

Mass spectrum (70 eV) m/e (rel intensity 281 (100), 

265 (5), 207 (7), 132 (12), 73 (9); ir (neat) 3000 (ms), 

3000 (ms), 1430 (mw) , 1270 (s), 1085 (vs), 820 (vs). 

Becamethylcyclopentasiloxane 

Mass spectrum (70 eV) m/e (rel intensity) 355 (100), 

340 (14), 266 (25), 105 (13), 77 (8), 75 (9), 74 (19), 

73 (75). 
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SUMMARY 

A method for producing a silicon-carbon double bond 

of the (p-p) TT type was developed. The advantage of using 

2,3-bis (trifluoromethyl)-7,V-dimethyl-T-silabicyclo [2.2.2J 

octa-2,5-diene over 1,l-dimethyl-l-silacyclobutane include 

its irreversibility and its lower temperature (400°C) re­

quired for its pyrolysis. Neither the number of steps, 

the overall yields, nor the ability to have various sub­

stitution offer any great advantage. While the expense 

at present might be slightly more due to the high cost of 

hexafluoro-2-butyne, the probable use in the future of 

other cheaper acetylenes will make chis a very economical 

source of silaalTcene. 

Tne additional advantage of photolytic elimination of 

silaalkene at much lower temperatures, although not com­

pletely worked out, is quite appealing. 

Perhaps the most dramatic result of this method of 

silaalkene generation is the fascinating possibilities, 

heretofore only dreamed about, that are implied. These 

will surely be most instrumental in elucidating a very 

basic, yet still poorly understood part of chemistry. The 

possibility of silabenzene produced by a thermal cleavage 

to examine cyclic conjugation with or without d-orbital 

participation (97) seems now to be much more than a fancy. 
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The substitution of various groups on silicon and the meth­

ylene will allow a more thorough investigation of the 

silicon-carbon ir-bond and perhaps even the isolation of 

some species are within reach. Changing the methylene 

group for other heteroatoms (0, S, NR) offers a tremendous 

amount of hope for studying in the near future (p-p) ir-

bonding with silicon to other atoms. 

In the meantime, the reaction of silaalkene with non-

enolizable carbonyl-containing compounds suggests other 

generators of oxosilanes, thioxosilanes, and iminosilanes 

from four-membered rings produced under conditions milder 

than 400°C. These newly generated species, besides being 

most interesting in themselves, will come from compounds 

whose properties will be equally, if not more, important. 

It is believed by the author that this work, rather 

than being definitive, terminal or conclusive, is only the 

beginning of what will surely be a most productive and 

worthwhile area of investigation with both synthetic and 

theoretical importance-
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